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To obtain a semi-theoretical equation for the excess Gibbs energy of a 
liquid mixture, Guggenheim’s quasi-chemical analysis is generalized 
through introduction of the local area fraction as the primary concentration 
variable. The resulting universal quasi-chemical (UNIQUAC) equation uses 
only two adjustable parameters per binary. Extension to multicomponent 
systems requires no ternary (or higher) parameters. 

The UNIQUAC equation gives good representation of both vapor- 
liquid and liquid-liquid equilibria for binary and multicomponent mixtures 
containing a variety of nonelectrolyte components such as hydrocarbons, 
ketones, esters, amines, alcohols, nitiles, etc., and water. When well-defined 
simplifying assumptions are introduced into the generalized quasi-chemical 
treatment, the UNIQUAC equation reduces to any one of several well- 
known equations for the excess Gibbs energy, including the Wilson, 
Margules, van Laar, and NRTL equations. 

The effects of molecular size and shape are introduced through struc- 
tural parameters obtained from pure-component data and through use of 
Staverman’s combinatorial entropy as a boundary condition for athermal 
mixtures. The UNIQUAC equation, therefore, is applicable also to polymer 
solutions. 
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SCOPE 
A significant fraction of chemical process design is con- 

cerned with separation of fluid mixtures by diffusional 
operations. All design methods for such separations re- 
quire quantitative estimates of fluid-phase equilibria; 
this work provides a contribution toward making such 
estimates for liquid-phase mixtures of nonelectrolytes, in- 
cluding polymers, and including those mixtures where 
nonideality is sufficiently strong to produce two liquid 
phases. 

Activity coefficients in liquid mixtures can be calculated 
from a model which expresses the excess Gibbs energy 
of the mixture as a function of the composition. A new 
model, called UNIQUAC, is presented here. This model 
is derived from a statistical-mechanical basis extending 
that used by Guggenheim in his quasi-chemical theory. 
Unlike Guggenheim’s theory, however, UNIQUAC is 
applicable to mixtures wh0.e molecules differ appreciably 
in size and shape and, unlike previous attempts to gener- 

alize Guggenheim’s method, UNIQUAC contains no more 
than two adjustable parameters per binary. 

UNIQUAC is applicable to multicomponent mixtures 
of nonpolar and polar liquids (including those that partici- 
pate in hydrogen bonding) as encountered in typical chem- 
ical and petrochemical processes. No ternary (or higher) 
constants are required. Attention is given to vapor-liquid 
and liquid-liquid equilibria. 

When well-defined simplifying assumptions are made, 
the UNIQUAC model can yield any one of several well- 
known expressions for the excess Gibbs energy, including 
the van Law, Wilson, and NRTL equations. Relative to 
these well-known equations, the advantage of UNIQUAC 
is that, for a large variety of multicomponent systems and 
using only two adjustable parameters per binary, reliable 
estimates can be made of both vapor-liquid and liquid- 
liquid equilibria using the same equation for the excess 
Gibbs energy. 

CONCLUSIONS AND SIGNIFICANCE 
The UNIQUAC model for liquid-phase activity coeffi- 

cients provides the process-design engineer with a useful 
tool for calculating fluid-phase equilibria as required in 

the design of distillation, extraction and similar operations. 
Because of its theoretical basis, the UNIQUAC model is 
applicable to a wide range of mixtures even though only 
two adiustable Darameters per binary are required. For 

Correspondence concerning this paper should be addressed to 1. M. 
prausdtz. D. s. Abrams is with African Explosives and Chemical In- 
dustries, Johannesburg, South Africa. 

binary ;nixtures lo‘ moderate nonideaiiv, the iwo-param- 
eter model can be simplified to yield a one-parameter 
equation for activity coefficients. 
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The derivation of UNIQUAC shows that the three- 
parameter NRTL equation is properly applicable to 
excess enthalpy than to excess Gibbs energy. 

While UNIQUAC Provides no major improvement Over 
Wilson’s equation for vapor-liquid equilibria in completely 

miscible systems, it can, unlike Wilson’s equation, also 
represent liquid-liquid equilibria for multicomponent mix- 
tures using only two adjustable parameters per binary. 
UNIQUAC provides a versatile model for calculating 
liquid-phase activity coefficients in multicomponent mix- 
tures using only limited binary data. 

The thermodynamics of nonideal liquid mixtures has 
generated a vast literature. Despite attention for over a 
century from some of the best scientific minds, the goal 
of predicting mixture properties from pure-component 
properties alone remains elusive; failure to reach this goal 
follows from inadequate fundamental understanding of 
liquid structure and intermolecular forces. Therefore, to cal- 
culate vapor-liquid and liquid-liquid equilibria needed for 
process design, it is necessary to construct models which, 
by necessity, are only approximations containing param- 
eters that must be obtained empirically. This work pre- 
sents such a model and discusses its use for engineering 
applications. 

ACTIVITY COEFFICIENT, EXCESS GIBBS ENERGY AND 
LATTICE MODELS 

Deviations from ideal behavior (Raoult’s law) are 
commonly expressed by activity coefficients as discussed 
in numerous textbooks. In a mixture, activity coefficient 
yi (for component i) is related to gE,  the excess Gibbs 
energy per mole of mixture, by 

nTgE = RT I; ni In yi (1) 
i 

where ni is the number of moles of component i and nT 
is the total number of moles. To obtain activity coefficients, 
therefore, it is necessary to construct an expression which 
gives g E  as a function of composition, temperature, and 
pressure; the most important variable is composition. For 
liquid mixtures at ordinary pressures, the effect of pres- 
sure is negligible. The effect of temperature is not negligi- 
ble, but often it is not large when consideration is re- 
stricted to a moderate temperature range. 

When nonelectrolyte liquids are mixed at constant tem- 
perature and constant pressure remote from critical con- 
ditions, there is little volume change. As shown by Scatch- 
ard (1937), even small volume changes can have a 
significant effect on the entropy of mixing and on the 
enthalpy of mixing but, to a good approximation, these 
effects tend to cancel in the excess Gibbs energy. There- 
fore, when attention is restricted to mixtures of nonelectro- 
lyte liquids at low or modest pressures, we can substitute 
for the excess Gibbs energy of mixing at constant tempera- 
ture and pressure, the excess Helmholtz energy of mixing 
at constant temperature and volume (Hildebrand and 
Scott, 1950). This substitution very much facilitates con- 
struction of a theory which is physically reasonable on the 
one hand and mathematically (relatively) simple on the 
other. Such a theory is provided by Guggenheim’s quasi- 
chemical lattice model which, however, in its original form 
is restricted to small molecules of essentially the same size. 
Previous attempts to extend it to larger molecules (Barker, 
1952; Sweeny and Rose, 1963) have not been useful, pri- 
marily because of the excessive number of adjustable 
parameters required to reduce the theory to practice. 

In this work, the theory of Guggenheim is extended to 
mixtures containing molecules of different size and shape 
by utilizing the local-composition concept introduced by 
Wilson (1964). The central idea of this concept is that 
when viewed microscopically, a liquid mixture is not 
homogeneous; the composition at one point in the mixture 
is not necessarily the same as that at another point. In 
engineering applications and in typical laboratory work 
only the average, overall (stoichiometric) composition 
matters, but for constructing liquid-mixture models, it 
appears that the local composition, rather than the average 
composition, is a more realistic primary variable. 

The extension, or generalization, of Guggenheim’s 
model leads to a result here called the UNIQUAC (uni- 
versal quasi-chemical) equation. The derivation of this 
equation is given in the next few sections. Readers con- 
cerned only with the engineering application of this equa- 
tion may proceed directly to the section on Application to 
Binary and Multicomponent Systems following Equation 
(24). 

Partition Function for a Binary Liquid Mixture 
Following Guggenheim (1952), we postulate that a 

liquid can be represented by a three-dimensional lattice 
of equi-spaced lattice sites; the volume in the immediate 
vicinity of a site is called a cell. Each molecule in the 
liquid is divided into attached segments such that each 
segment occupies one cell. The total number of cells is 
equal to the total number of segments. [A possible refine- 
ment where some cells are unoccupied (holes) is not used 
here.] The configurational partition function 2 is given by 

2 = Zlattice * &ell 

where Zlattice refers to the situation where the center of 
every segment is coincident with a lattice site and where 
Zcell provides those contributions to Z which are caused 
by motions of a segment about this central position. In 
mixtures of nonelectrolyte liquids removed from critical 
conditions, we assume that for each component &ell is 
independent of composition. For a binary mixture contain- 
ing N1 molecules of component 1 and N 2  molecules of 
component 2, the Helmholtz energy of mixing is then 
given by 

(3) 

where lc is Boltzmann’s constant. The molar excess Gibbs 
energy g” is given by 

where R is the gas constant, x stands for mole fraction, and 
n for the number of moles. 

Following Guggenheim, the lattice partition function is 
given by 

Zlattice = 8 4 6 )  exp [- UO(~)/~TI ( 6 )  
a11 e 
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where o is the combinatorial factor (number of ways that 
the molecules can be arranged in space) and Uo is the 
potential energy of the lattice, that is, the energy required 
to remove all molecules from the lattice; Uo is closely re- 
lated to the energy of isothermal vaporization from the 
liquid to the ideal-gas state. 

Both o and Uo depend on the molecular configuration 
of the mixture, designated by the variable 8. The summa- 
tion in Equation (6) is over all possible 8, that is, over all 
values of 8 which are permitted within the constraints of 
the overall stoichiometry. 

Since Guggenheim was concerned with mixtures of 
spherical molecules having the same size, he used for 0 
the quantity N12 which is the number of nearest neighbors, 
where one neighbor is a molecule of component 1 and the 
other a molecule of component 2. N12 depends not only 
on N1 and N2 but also on the microscopic structure of the 
solution; if there is a tendency to segregate, where like 
molecules want to be near each other, N12 is (relatively) 
small. On the other hand, if there is a tendency for the 
molecules to mix randomly without regard to identity, Nl2 
is (relatively) large. 

For mixtures of polysegmented molecules differing in 
size and shape, N12 is not an appropriate variable for de- 
scribing the micro-composition of the lattice. For such 
mixtures we propose to use the local area fraction. 

LOCAL AREA FRACTION 

A molecule of component 1 is represented by a set of 
bonded segments; the number of segments per molecule 
is rl. While all segments, by definition, have the same size, 
they differ in their external contact area; for example, in 
normal pentane, the two methyl end groups have a larger 
external area than the three methylene groups; in neo- 
pentane, the central carbon has no external contact area at 
all. For a molecule of component 1, the number of ex- 
ternal nearest neighbors is given by xql where z is the 
coordination number of the lattice and 91 is a parameter 
proportional to the molecule's external surface area. Simi- 
larly, for a molecule of component 2, we have structural 
parameters r2 and q 2 .  

Let us focus attention on the composition of a region 
in the immediate vicinity of a molecule 1. The local area 
fraction 821 is the fraction of external sites around mole- 
cule 1 which are occupied by segments of molecule 2. 
Similarly, local area fraction ell is the fraction of external 
sites around molecule 1 which are occupied by segments 
of (another) molecule 1. When attention is focused on the 
composition of a region in the immediate vicinity of a 
molecule 2, similar definitions hold for e12 and BZz. For a 
binary mixture, therefore, we have four local area fractions 
which describe the microstructure of the lattice; however, 
only two of these are independent because 

dI1 + e21 = 1 

dI2 + e22 = 1 
and 

The lattice energy Uo is the sum of all interaction ener- 
gies between pairs of nonbonded segments 

where Uij  characterizes the energy of interaction between 
sites i and i. For convenience let uii = ( d 2 )  Uij. Equa- 
tion (9) then becomes 
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-Uo = qiNi(eiiUi1 + B 2 1 ~ 2 1 )  + q2N2(&2~22 + 8 1 2 ~ 1 2 )  

The minus sign on the left-hand side of Equations (9)  
and (9a) follows from the convention that the potential 
energy of the ideal-gas state (infinite separation between 
molecules) is taken as zero. 

In a given molecule, all segments are not necessarily 
chemically identical. Energy parameters uij, therefore, 
represent averages since subscripts i and i refer to com- 
ponents, that is, molecules of type i and i. 

Toward elucidation of the local-area-fraction concept, a 
two-dimensional example is given in Appendix A. 

COMBINATORIAL FACTOR 

(9a) 

For a given set of local area fractions, we must calculate 
the number of possible configurations (microstructures) 
for a mixture of N1 molecules of component 1 and N2 
molecules of component 2. There is no exact method avail- 
able for solving this combinatorial problem; we here use 
an approximation analogous to that used by Guggenheim. 

(10) 0 = o1u2h(Nir N2) 
where oi refers to the number of configurations associated 
with a site occupied by a segment of molecule i(i = 1 ,2 ) .  

The function h depends only on N1 and N2; it is intro- 
duced as a normalization factor to assure that the com- 
binatorial factor o satisfies a physically reasonable bound- 
ary condition. For this boundary condition Guggenheim 
chose the exact result for mixtures of equi-sized spherical 
molecules with no attractive forces. For our boundary 
condition we choose the combinatorial factor of Staverman 
(1950) for mixtures of molecules with arbitrary size and 
shape but no attractive forces. Staverman's formula is 
similar to that of Flory-Huggins. It is not exact but it pro- 
vides a physically reasonable approximation. 

As discussed in several texts on statistical mechanics, 
the summation in Equation (6) can be replaced by its 
maximum term. 

The number of distinguishable configurations 01 and 0 2  

are approximated by 

We assume that 

Coordination number x does not appear in Equations 
(11) and (12) because it is not possible to permute inde- 
pendently all of the nearest neighbors about a lattice site. 

To find h, we consider the athermal case (all uij = 0 
and therefore Uo = 0).  The maximum term in the summa- 
tion is found by separate differentiations with respect to 
ell and 822, and by setting the results equal to zero. Omit- 
ting mathematical details, we find that the average local 
area fractions for an athermal mixture are given by 

as illustrated in Appendix A. The superscript (0)  denotes 
zeroth approximation (that is, athermal mixture). Mass- 
balance constraints give 
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Substituting Equations (4) ,  (6), (9a), ( 10) to (12), 
and (17) to (19) into Equation (5)  we obtain the desired 

gE = gE (combinatorial) + gE (residual) (20) 

(16) 

In the zeroth approximation, therefore, the average local 
area fractions are the same as the average area fractions 

q y 2  e2,(o) = 822(o) = e2 = 
q d 1 +  q2Nz result 

where 
denoted by 81 and B2. gE  (combinatorial) 9 1  a2 

stituting Equations (11) to (14) into Equation (10) RT X1 XZ 
= x l I n - +  xzln- The normalization factor h can now be found by sub- 

yielding - 

where ~ ( 0 )  is the combinatorial factor given by Staverman 
( 1950). 

Having found h as outlined above, we now proceed to 
find the next approximation for the average local fractions 
for the nonathermal case, that is, where uij # 0. 

AVERAGE LOCAL AREA FRACTIONS IN NONATHERMAL 
MIXTURES 

The summation in Equation (6) is replaced by its 
maximum term, Equations ( lo ) ,  (11), and (12) are used 
again but in this approximation UO [Equation (9)] is not 
set equal to zero. Equation (17) is retained. The resulting 
expression for Zlattice is separately differentiated with re- 
spect to ell and eZ2 and the results are set equal to zero. 
Again using the constraining Equations (7) and (8) but 
omitting mathematical details, we now find that the aver- 
age local area fractions are given by 

(18) 
el 

ell(l) = - (u21 - u11) 

RT 81 + 4 exp 

and 

(19) 
82 

- (u12 - u22) 

0 (1) = 22 

RT e2 + o1 exp 

where Uij is expressed in units of calories per mole and 
where superscript (1)  denotes first approximation and el 
and 82 are average area fractions defined by Equations 
(15) and (16).  

In mixtures that are not athermal, therefore, the average 
local area fractions are not the same as the average area 
fractions. Relations similar to Equations (18) and (19) 
were previously suggested by Wilson ( 1964). 

TABLE 1. TYPICAL VALUFS OF SIZE AND SURFACE 
PARAMETERS* 

Fluid r 4 

Water 
Carbon dioxide 
Acetaldehyde 
Ethane 
Dimethyl amine 
Methyl acetate 
Furfural 
Benzene 
Toluene 
Aniline 
Triethyl amine 
n-Octane 
n-Decane 
n-Hexadecane 
Acetone 
Chlorof o m  

0.92 
1.30 
1.90 
1.80 
2.33 
2.80 
2.80 
3.19 
3.87 
3.72 
5.01 
5.84 
7.20 
11.24 
2.57 
2.87 

* Parameters are evaluated as shown in Appendix B. 

1.40 
1.12 
1.80 
1.70 
2.09 
2.58 
2.58 
2.40 
2.93 
2.83 
4.26 
4.93 
6.02 
9.26 
2.34 
2.41 

and 

gE (residual) 

RT 
= -41x1 in 181 + e2 TZ11 

In Equation (21) @ is the average segment fraction: 

Equations (20) to (22) contain pure-component struc- 
tural parameters rl ,  r2, 41, and q2; these are evaluated 
from bond angles and bond distances as discussed in Ap- 
pendix B. 

Note that the expression for gE (combinatorial) contains 
two composition variables: the average area fraction 8 
and the average segment fraction @. However, the ex- 
pression gE (residual) contains only one composition vari- 
able: the average area fraction 8. There are no adjustable 
binary parameters in Equation (21), but there are two 
adjustable binary parameters in Equation (22) : (uz1 - 
u11) and (u12 - ~ 2 2 ) .  From the derivation of Equations 
(20) to (22) it follows that uzl = u12. 

APPLICATION TO BINARY AND 
MU LTICOMPON ENT SYSTEMS 

Equations (20) to (22) give the excess Gibbs energy 
for a binary mixture in terms of two adjustable binary 
parameters and two pure-component structural parameters 
per component, r and q. Table 1 gives these structural 
parameters for some representative nonelectrolyte mole- 
cules; a more complete list is available from the authors 
upon request. 

Activity coefficients are readily found by differentiation 
as indicated by Equation (2 ) .  For a binary mixture, activ- 
ity coefficient 71 is given by 
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For component 2, yz can be found by interchanging sub- 
scripts 1 and 2. 

Numerical results for In y are insensitive to the choice 
of coordination number z provided a reasonable value 
(6  6 z 4 12) is chosen. However, adjustable parameters 
721 and 712 depend on that choice. In this work we have 
consistently used z = 10. 

The derivation of Equation (20) is readily extended to 
mixtures containing three or more components without 
additional assumptions. For the multicomponent case 
Equations (21) and (22) become 

gE ( combinatorial) @i 
=Sxi ln-  

RT i xi 
2 $1 

2 i  @pi 

+ -8qixiln- (2la)  

gE (residual) = - ?qix+ln 8 8 j T j i  (22a) 
RT ( j  1 

and the activity coefficient for component i becomes 

where 

and where the average area fraction e and the average 
segment fraction CP are defined by 

where x is the mole fraction. The summations in Equations 
(25a), (27), and (28) are over all components, including 
component i. From Equation (23a) it follows that ~ i i  = 

Since the derivation of Equation (25) is based on a 
generalization (or extension) of Guggenheim’s quasi- 
chemical model, we refer to that equation by the name 
UNIQUAC (universal quasi-chemical) . 

The UNIQUAC equation is not only a generalization 
of Guggenheim’s model; it also provides a generalization 
of nearly all commonly-used expressions for the excess 
Gibbs energy. When clearly-defined simplifications are 
made in Equations (21) and (22), the UNIQUAC equa- 
tion reduces to any one of several well-known equations, 
as indicated in Table 2. 

The main advantage of the UNIQUAC equation is that, 
with only two adjustable parameters per binary, it gives 
good representation of both vapor-liquid and liquid-liquid 
equilibria for a variety of nonelectrolyte liquid mixtures. 
Some typical results are shown in Tables 3 and 4 and in 
Figures 5 to 11. 

7jj = 1. 

To test the applicability of the UNIQUAC equation, 
experimental vapor-liquid equilibrium data from the litera- 
ture were reduced for 220 typical binary systems including 
those where the components differ appreciably in molecu- 
lar size and shape. Optimum parameters (u21 - u 1 1 )  and 
(u12 - u22)  were obtained by a new fitting technique 
(Abrams and Grens, 1974) wherein probable experi- 
mental uncertainties were used to determine relative 
weighting factors for individual data points. In reducing 
the data, the coordination number z was set equal to ten. 

When both vapor-liquid and liquid-liquid equilibrium 
data are used to obtain UNIQUAC parameters for a 
fixed binary system, the results appear to be smooth func- 
tions of temperature as indicated in Figure 1. 

Vapor-liquid equilibrium data reduction was also per- 
formed using the two-parameter Wilson equation and the 
three-parameter NRTL equation. For binary vapor-liquid 

TABLE 2. SIMPLIFICATIONS IN UNIQUAC EQUATION TO 
OBTAIN WELL-KNOWN RELATIONS FOR THE EXCESS 

GIBBS ENERCY 

Simplifying assumptions 

(21) Equation (22) 
Equation 

9 1  = rl 
9 2  = r2 

9 1  = rl 
9 2  = 72 

9 1  = r1 
9 2  = r2 
Equals zero 

Equals zero 

9 1  = 9 2  = c 

9 1 - 1  = 9 2 - 1  = a12 

gEresidual = hE 
Expand terms in 

(3 
truncating after 

linear term 

Equals zero Expand terms in 

(3 

(3 

(3 

(3 

truncating after 
quadratic term 

Equals zero Expand terms in 

truncating after 

9 1  = 9 2  

quadratic term 

Equals zero Expand terms in 

truncating after 
linear term 

u12 = d W l U 2 2  

9 1  = rl Expand terms in 

9 2  = 1-2 truncating after 
linear term 

Resulting relation 
for gE(a)  

Athermal Flory-Huggins 

Two-parameter Wilson 

Three-parameter Wilson 

NRTL 
van Laar with 

9 1  = ci 
9 2  = 0 2  
Three-suffix Margules 

Scatchard-Hildebrand with 

612 = Ull  

622 = u22 

9 1  = 0 1  
9 2  = 0 2  
Flory-Huggins with 

(-2u12 + u11 + u22) 

RT X =  

9 1  = 0 1  
9 2  = 0 2  

( a )  Unit inconsistencies are only apparent because r and q are di- 
mensionless. The parameter ut j is proportional to the interaction energy 
per pair of i-i contact sites. It is expressed in units of calories per mole. 
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equilibria, the goodness-of-fit is about the same for all 
three equations. Further, when binary parameters alone 
are used to predict ternary vapor-liquid equilibria, all 
three equations are essentially similar in prediction accu- 
racy. (See Table 5 . )  The important advantages of the 
UNIQUAC equation follow from its applicability to both 
vapor-liquid and liquid-liquid equilibria using only two 
adjustable parameters per binary. 

ONE-PARAMETER FORM OF UNIQUAC EQUATION 

The UNIQUAC equation contains two adjustable 
parameters per binary: (uZ1 - ull) and (u12 - As 
suggested by Bruin (1971), it is possible to eliminate one 
of these by assuming 

where AulvaP is the energy required to vaporize one mole 
of pure liquid i isothermally from the saturated liquid to 
the ideal gas. To a zeroth approximation the adjustable 
parameter u12 is given by the geometric mean of u11 and 
~ 2 ~ .  For a first approximation we write 

u12 = u21 = (UllU22) 1/2 c1 - C12l (30) 

where c12 is the single adjustable parameter. Optimum 
values of c12 are shown in Table 4 for some representative 
binary systems. For mixtures of nonpolar liquids c12 is 
positive and small compared to unity. For mixtures con- 
taining one polar component (1) and one nonpolar com- 
ponent (2 ) ,  c12 is also positive but no longer small be- 
cause only the nonpolar part of u11 contributes to u12. For 
mixtures of polar liquids no general rule can be observed; 
however, it is clear that if there is a preferential attraction 
( solvation) between the unlike molecules (for example, 

TABLE 3. TYPICAL REPRESENTATION OF BINARY VAPOR- LIQUID EQUILIBRIA BY UNIQUAC EQUATION 

System 

Methylc yclopeatane-benzene 
Benzene-iso-octane 
Isooctane-nitroethane 
Nitromethane-benzene 
Hexane-nitroethane 
Methanol-benzene 
Ethanol-iso-octane 
Ethanol-hexane 
Ethanol-water 
Ethylacetate-ethanol 
Water-methylethyl ketone 
Acetone-benzene 
Carbon tetrachloride-acetonitrile 
Methylaceta te-ethanol 
Acetone-chloroform 
Methylacetate-methanol 

t The variance of the fit @ is given by 

42, Variance of Fit x 1031 
Temp., "C or No. of data One Two 

pressure, mm Hg points parameter parameter Reference 

760 
760 

35" 
45" 
45" 
55" 
50" 

7430 
70" 
70" 

45" 
45" 
45" 
50" 
50" 

760 

29 
11 
19 
12 
12 
9 

13 
16 
13 
15 
8 

11 
13 
11 
29 
15 

8.4 
4.1 
0.4 
0.4 
1.3 

197.2 
103.4 
196.3 
126.1 
18.2 
1.7 
2.7 

147.8 
8.6 

23.5 
41.6 

8.7 
4.5 
0.2 
0.5 
0.1 
3.2 
6.3 
8.8 
0.55 
0.69 
1.3 
0.5 
7.1 
9.3 
4.2 
4.2 

Myers ( 1956) 
Chu (1956) 
Edwards (1962) 
Brown (1957) 
Edwards (1962) 
Scatchard (1946) 
Kretschmer ( 1948) 
Sinor (1960) 
Mertl ( 1972) 
Mertl ( 1972) 
Othmer (1945) 
Brown ( 1957) 
Brown (1954) 
Nagata (1962) 
Severns ( 1953) 
Severns (1953) 

where the superscript M denotes the measured value of the variable and the superscript o denotes the estimate of the true value of the variable. D 
is the number of data points and L is the number of parameters and the 0's are the variances in the measured variables. 

TABLE 4. BINARY PARAMETERS IN TWO-PARAMETER OR ONE-PARAMETER UNIQUAC EQUATION FOR REPRESENTATIVE 
BINARY SYSTEMS 

Temp., "C or Two-parameter One 
pressure, (u21 - u11) (u12 - un) parameter 

System (1)-(2)  mm Hg cal/mole c a 1 / m o 1 e (712 Reference 

Methylcyclopentane- 

Benzene-iso-octane 
Isooctane-nitroethane 
Nitromethane-benzene 
Hexane-nitroethane 
Methanol-benzene 
E thanol-iso-octane 
E thanol-hexane 
Water-ethanol 
Ethylacetate-ethanol 
Water-methylethyl ketone 
Acetone-benzene 
Carbon tetrachloride- 

acetonitrile 
Methylacetate-ethanol 
Acetone-chloroform 
Methylacetate-methanol 

benzene 
760 

760 
35" 
45" 
45" 
55" 
50" 

760 
70" 
70" 

760 
45" 
45" 

45" 
50" 
50" 

-36.9 

182.1 
5.3 

309.1 
-36.3 
1355.8 
968.2 
940.9 
258.4 

622.3 
331.0 

- 100.1 

-292.3 

-40.5 
149.8 

-233.1 

138.1 

-76.5 
492.3 

471.6 

-357.6 
-335.0 

378.1 
446.5 
222.2 

-208.9 
953.4 

35.45 

-417.4 

426.5 

622.1 
-315.5 

0.092 

0.078 
0.412 
0.218 
0.351 
0.182 
0.229 
0.308 
0.272 
0.034 
0.419 
0.059 
0.494 

0.229 
-0.183 
0.156 

Myers (1956) 

Chu ( 1956) 
Edwards (1962) 
Brown (1957) 
Edwards ( 1962) 
Scatchard (1946) 
Kretschmer (1948) 
Sinor (1960) 
Mertl (1972) 
Mertl (1972) 
Othmer (1915) 
Brown (1957) 
Brown (1954) 

Nagata (1962) 
Sevems ( 1955) 
Severns (1955) 
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hydrogen bonding in acetone-chloroform) then cI2 must 
be negative. 

Table 3 shows that for mixtures of nonpolar liquids the 
one-parameter UNIQUAC equation represents the data 
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Tempera ture  ("C) 
Fig. 1. UNIQUAC parameters for nitroethane ( l ) ,  octane (2);  and 
nitroethane ( I ) ,  hexane (3) calculated from vapor-liquid and liquid- 

liquid data. The upper consolute temperature i s  Tc. 
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Fig. 2. Vapor pressure of benzene in solutions of polyisobuwlene 
(molecular weight lo5) a t  40°C. 
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essentially as well as the two-parameter UNIQUAC equa- 
tion. However, for other mixtures two parameters, rather 
than one, are required to obtain satisfactory representa- 
tion. 

POLYMER SOLUTIONS 

Since the combinatorial contribution to the excess Gibbs 
energy [Equation (21) ] is applicable to mixtures contain- 
ing very large molecules (polymers) and molecules of nor- 
mal size (monomers), the UNIQUAC equation may also 
be used to represent the properties of polymer solutions. 
Illustrative results are shown in Figures 2 and 3. All re- 
sults shown in Figure 3 were obtained with only two 
adjustable parameters. 

LIQUID-LIQUID EQUILIBRIA 

Well-known equations of thermodynamic stability can 
be applied to the UNIQUAC equation to determine 
whether one or two liquid phases exist at equilibrium. 
Whenever the magnitude of u12 is low compared to that 
of ull or uZ2, a single phase is unstable and two liquid 
phases are formed. However, in addition to energetic 
effects, differences in molecular size and shape may also 
affect phase stability. To illustrate, Figure 4 shows the 
molar Gibbs energy of mixing as a function of composition. 
For simplicity, a symmetric system has been chosen; for 
each of the three curves shown r1 = r2 = 3.3 and (uz1 - 
ull)  = (u12 - uz2) = 0.45 RT. Further, for all three 
curves q1 = 92.  The lowest line, with q = 2, indicates 
phase stability; the middle line, with q = 2.5, indicates 
incipient instability and the top line, with q = 3, indicates 
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Fig. 3. Vapor pressure of water in solutions of polyethylene glycol a t  
65°C. 
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that two phases coexist. Figure 4, therefore, shows that the 
tendency for phase-splitting depends not only on differ- 
ences in potential energy but also on molecular geometry: 
when q = 2, the external molecular surface area is insuffi- 
cient to produce phase instability but when q = 3 the 
molecular area available for interaction is sufficiently large 
to produce two liquid phases. 

The effect illustrated in Figure 4 is observed in experi- 
mental results for the systems methanol-n-octane and 
methanol-iso-octane. In these two binaries, the energetic 
parameters are essentially identical and parameter T for 
octane is almost independent of chain branching. How- 
ever, q for iso-octane is smaller than that for n-octane; the 
external surface area of a branched chain is always lower 

L 

-0.30 

-0 '25-  

0 

0 
- 
2 

0 I I I I 1 

A. .I 

- 

I- \\ 
.- 
E 

-0.15 

Mo le  Frac t ion  
Fig. 4. Effect of surface-area parameter q on Gibbs energy of mixing 

for a symmetric system according to UNIQUAC. 

System 

Ethanol 
Ethyl acetate 
Water 
Methyl acetate 
Chloroform 
Benzene 
Ethanol 
Benzene 
Cyclohexane 
Chloroform 
Methanol 
Methyl acetate 
Acetone 
Methanol 
Chloroform 

than that of an unbranched chain having the same num- 
ber of segments. Therefore, we expect methanol-n-octane 
to show phase instability more readily than does methanol- 
iso-octane, in agreement with experiment: the upper con- 
solute temperature for methanol-n-octane is 66.7 "C while 
that for methanol-iso-octane is 42.5"C (Francis, 1961). 

When binary data alone are used, representation of 
multicomponent liquid-liquid equilibria is much more dif€i- 
cult than representation of multicomponent vapor-liquid 
equilibria. For vapor-liquid equilibria for mixtures of nor- 
mal molecular weight, Raoult's law often gives a reason- 
able zeroth or first approximation; activity coefficients 
provide corrections, but the main influence on vapor- 
liquid equilibria is given by the pure-component vapor 
pressures. However, this influence plays no role at all in 
liquid-liquid equilibria. Small changes in activity coeffi- 
cients usually produce large qualitative changes in the 
shape of the connodal curve and the slopes of the tie 
lines, especially near the plait point. Therefore, for any 
empirical or semi-empirical expression for the excess Gibbs 
energy, ternary liquid-liquid equilibria provide a much 
stricter test than ternary vapor-liquid equilibria. 

The two-parameter Wilson equation which is so suc- 
cessful for multicomponent vapor-liquid equilibria, fails 
completely for liquid-liquid equilibria (Wilson, 1964), 
even in binary systems, While Wilson has suggested a 
three-parameter form of his equation which is applicable 
to binary liquid-liquid systems (Wilson, 1964), it is not 
possible to generalize it to ternary (and higher) systems 
without additional simplifying assumptions (Renon and 
Prausnitz, 1969). The two-parameter equations of van 
Laar and Margules are applicable to liquid-liquid equi- 
libria but usually give poor representation of such equi- 
libria. 

The three-parameter NRTL equation, proposed in 1968, 
provides a large improvement in representation of ternary 
liquid-liquid equilibria using only binary parameters, 
However, calculated results are sensitive to the choice of 
the binary parameters a12, 02, and a13, especially to 012 

in plait-point systems where 1 and 2 are the partially 
miscible components. Mutual solubility data for the 1-2 
binary can be used to fix two of the 1-2 binary param- 
eters, but the all-important choice of "12 remains elusive. 
Empirical rules originally suggested ( Renon and Praus- 
nitz, 1968) appear to be inadequate for consistently re- 
liable results. Therefore, as shown by Renon et al. (1971), 
good representation for ternary systems can only be ob- 
tained with extensive ternary data used to fix the nine 

TABLE 5. REPRESENTATION OF TERNARY VAPOR-LIQUID EQUILIBRIA BY UNIQUA,C EQUATION 

Temperature "C 
or pressure, 

mm Hg 

70" 

760 

760 

760 

50" 

Root mean 
square 

deviation in 
No. of data vapor mole 

points fraction x 103 
9 

9 10 
8 
5 

91 4 
7 

15 
19 8 

9 
8 

13 9 
9 
8 

30 10 
10 

Root mean 
square 
relative 

deviation in 
pressure x 103 Reference 

12 Mertl (1972) 

8 Nagata (1962) 

11 Morachevskii ( 1963) 

10 Hudson (1969) 

12 Severns (1955) 
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binary NRTL parameters. 
The advantage of the UNIQUAC equation is that it is 

applicable to partially miscible systems using only two 
adjustable parameters per binary. Not only does this mean 
that fewer experimental points are needed to fix the 
parameters but, what is more important, the mutual- 
solubility data for a partially miscible binary uniquely fix 
the two parameters needed for that binary. 

Uniquac Using B i n a r y  Data Only A -  0 --Experimental 

Fig. 5. Liquid-liquid equilibria in the system: hexane (1) aniline (2), 
and methylcyclopentane (3) a t  25°C. Concentrations are in mole 

fractions. 

(u3* -  uZ2), cal/mole 

-60 -50 -40 -30 -20 
7; I I I I 

I I I I 1 
-400 -380 -360 -340 -320 

(u3, - u , , ) ,  caI/mole 

Fig. 6. Confidence ellipses for the UNIQUAC binary parameters in 
the systems: chloroform ( l ) ,  acetone (31, and water (21, acetone (3) .  

3 

.... umquoc U s ~ n g  Elnary Data Only 
-Uniquac Wi th  Binory Data and  

L t m l t f n g  Dlstrlbulion C o e f l i c l e n t  

0 - -Exper imenlo l  

I 2 

Fig. 7. Liquid-liquid equilibria in the system: chloroform (11, water 
(2). and acetone (3) a t  60°C. Concentrations are in weight fractions. 

In most common ternary liquid-liquid systems there are 
either one or two partially-miscible binaries. If there are 
two, it is a relatively simple matter to construct the equi- 
librium diagram when mutual-solubility data are avail- 
able for both partially miscible binaries. Results are not 
strongly sensitive to the binary parameters of the com- 
pletely miscible pair. To illustrate, Figure 5 shows ex- 
cellent agreement between calculated and experimental re- 
sults for the system hexane-aniline-methylcyclopentane. 

However, if the ternary diagram has a plait point (only 
one partially-miscible pair), accurate representation using 
binary data only becomes much more difficult. Binary 
parameters for the partially-miscible pair are determined 
uniquely from mutual-solubility data, but calculated re- 
sults are now sensitive to the choice of binary parameters 
for the two miscible pairs. 

It has been pointed out by several authors (Tierney, 
1958; Nagahama et al., 1971) that reduction of vapor- 
liquid equilibrium data cannot yield unique binary param- 
eters unless the accuracy of the data is extremely high, 
much higher than usually encountered in typical experi- 
mental studies. Within the experimental error, many sets 
of binary parameters can equally well reproduce the 
binary vapor-liquid equilibrium data. The two parameters 
are strongly correlated such that if one of them is chosen 
arbitrarily, the other is fixed. 

To illustrate the difficulties encountered in calculating 
ternary equilibria in a plait-point system, consider the 
ternary chloroform ( l ) ,  water (2) ,  acetone (3) at 60°C. 
Parameters 712 and 721 are uniquely fixed by mutual solu- 
bility data. Vapor-liquid equilibrium data for the 1-3 and 
2-3 binaries yield parameters shown in Figure 6; for each 
binary, any point within the area shown can reproduce 
the experimental vapor-liquid equilibrium data within the 
experimental uncertainty. 

When ternary calculations are based on the best binary 
parameters shown by triangle-points in Figure 6, we ob- 
tain results shown by the dotted lines in Figure 7 and by 
the dashed lines in Figure 8 which show the distribution 
coefficient and the selectivity defined by 
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where ' and " designate the equilibrium liquid phases. 
Similar results were obtained for the system furfural 
( l) ,  iso-octane (2),  benzene (3) at 25°C shown in 
Figures 9 and 10. The calculated results are in poor 
agreement with the ternary data. In these calculations the 
best binary parameters are those which give the best 
representation of the binary vapor-liquid equilibria. 

Calculated With 
Experimental Uniquac Equat ion 

A B  _ _ _  Binary Data Only 4 5  

Binary Data a n d  K F  

5 t  

- 8  

- 7  

- 6  

- 
3 

- 5 -  

- 4  

- 3  

- 2  

- I  

0 
0 0 I 0.2 0.3 0.4 0.5 0.6 

Male Fraction Acetone In Chloroform Phose 

Fig. 8. Distribution coefficient of acetone and p ,  selectivity of 
chloroform for acetone relative to water, a t  60°C. 

\\/ ---*-- 
____- - - - -  

...................................................................... ______- - - - -  ----- 
,v V V V 2 

Fig. 9. Liquid-liquid equilibria in the system: furfural ( I ) ,  isooctane 
(21, and benzene (3) a t  25°C. Concentrations are in weight fractions. 

Significant improvement (especially in KD and 8 )  can 
be obtained by choosing the best binary parameters in 
such a way that, first, the binary vapor-liquid equilibrium 
data are reproduced within the experimental uncertainty 
and, second, the calculated limiting distribution coefficient 
K D m  is in agreement with the experimental value as deter- 
mined from the ternary data: 

Calcu la ted 
With Uniquac I \ 

L 
Q) 
0 
0 
c 

n .- 
L c 
ln 

0.6 I 1 I 
0 0. I 0.2 0.3 

Mole F rac t i on  Benzene In Fur fura l  Phase 
Fig. 10. Distribution coefficient of benzene and selectivity of furfural 

for benzene relative to isooctane. 

.......... Uniquac Using Binary 

@ota Only 
Uniquac Using  Ternary [\- - - E Tie-L ine  rpert men Data  ta I Only. 

2 

Fig. 11. Liquid-liquid equilibria in the system: ethyl acetate (1). 
water (2). and ethanol (3). Concentrations are in weight fractions. 
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K D ~ “  = Limit KDS (33) 
2*‘+0 

ZS”+O 

Ternary results based on these calculations are shown 
by the continuous lines in Figures 7 tlwough 10. Agree- 
ment with experiment is now very much better. Binary 
parameters used in the calculations are shown by circle- 
points in Figure 6. 

FITTING OF BINARY PARAMETERS FROM TERNARY 
DATA 

Instead of fitting the binary parameters from binary 
data, it is, of course, possible to ignore vapor-liquid binary 
data and, with a suitable computer program, to obtain all 
binary parameters from the ternary connodal-line and tie- 
line data. This procedure, as discussed by Renon (1971), 
necessarily produces excellent results. We too have per- 
formed such a calculation for the system water, ethanol, 
ethyl acetate with splendid results, as shown in Figure 11. 
However, we find that the six binary parameters obtained 
by such brute-force fitting fall far outside the contour 
lines obtained from fitting binary vapor-liquid equilibria; 
in other words, these brute-force binary parameters, ob- 
tained from ternary liquid-liquid data alone, cannot pre- 
dict vapor-liquid equilibria for the binaries within experi- 
mental error. 

If interest is restricted to a particular ternary liquid- 
liquid system, then brute-force fitting of parameters for 
that system may serve a useful purpose. But such a pro- 
cedure is likely to produce poor results for the case, com- 
monly encountered in industry, where there are four, five, 
or more components present and experimental data for the 
multicomponent system are unavailable or, at best, frag- 
mentary. In that case forcefitting one of the ternaries 
locks-in parameters for three of the binaries, leaving in- 
sufficient freedom for accurate calculation of the multicom- 
ponent equilibrium diagram, For example, consider the 
quaternary system benzene (I), furfural (2 ) ,  cyclohexane 
(3) ,  iso-octane (4 ) .  We can easily force-fit the 1-2-3 
ternary and obtain a fine representation of the ternary 
data. We have thereby fixed the 1-2, 1-3, and 2-3 binary 
parameters, If we now want to fit the 1-2-4 ternary we 
can vary the 1-4 and 2-4 binary parameters. But we still 
have to fit two additional ternaries (1-3-4 and 2-3-4) and 
to do so we have availabIe for adjustment only one set 
(3-4) of binary parameters. Unless data are plentiful and 
the computer program is very large, force-fitting is not 
useful for representing liquid-liquid equilibria for systems 
containing more than three components. 

CONCLUSION 

A new model has been established for the excess Gibbs 
energies of multicomponent liquid mixtures of nonelectro- 
lytes. This model, using only two adjustable parameters 
per binary, gives good representation of vapor-liquid and 
liquid-liquid equilibria for a wide variety of mixtures. The 
utility of this model follows from its semitheoretical basis 
which gives consideration to molecular size and shape 
through structural parameters and to deviations from ran- 
dom mixing through application of the local-composition 
concept. 
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NOTATION 

A = Helmholtz energy 
uE 
c 
c12 
D 

f 
hE 
k = Boltzmann constant 
K D  = distribution coefficient 
L 
2 = see Equation (26) 
n = number of moles 
N = number of molecules 
P = pressure 
q = pure-component area parameter 

= excess Helmholtz energy per mole 
= third parameter in Wilson’s equation 
= deviation from geometric mean in Equation (30) 
= number of data points (Table 3) 
= excess Gibbs energy per mole 
= normalizing factor in Equations (10) and (17) 
= excess enthalpy per mole (Table 2) 

= number of parameters (Table 3)  

r 
T 
UO 

= pure-component volume parameter 
= temperature 
= potential energy of a lattice containing N1 + N 2  

= potential energy characterizing ii interaction 
= UNIQUAC binary interaction parameter 
= energy of vaporization to ideal gas per mole 
= liquid-phase mole fraction 
= vapor-phase mole fraction 
= configurational partition function 
= lattice coordination number, a constant here set 

+ . . . . molecules 

equal to 10 
Greek Letters 

a12 

yi 
(r = variance (Table 3) 
~i = segment fraction 
Oi = area fraction 

= parameter in NRTL equation 
= selectivity 
= activity coefficient of component i 

= local area fraction of sites belonging to molecule 
i around sites belonging to molecule i 

= molecular configuration. See Equation (6) B 
r = see Equation (23) 
w = combinatorial factor 

Superscripts 
0 = zeroth approximation 
1 
M 

’ or 
0 

co 

- -  
= first approximation 
= measured variable (Table 3)  
= estimated true value of variable (Table 3) 

” = equilibrium liquid phase in two-liquid system 
= infinite dilution 

Subscripts 
i = component i 
i = component j 
T = total 
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APPENDIX A. LOCAL AREA FRACTION 

To illustrate the concept of local area fraction, we consider 
a binary system containing six molecules of type 1 and six 
molecules of type 2 on a two-dimensional lattice as enclosed 
by the boxes in Figure A l .  Each 1-molecule occupies three 
sites and each 2-molecule occupies two sites; thus rl = 3 and 
rz = 2. The coordination number z of the two-dimensional 

Fig. Al. Two possible arrangements (within box) of six black and 
white molecules. Black molecules contain two segments each and 

white molecules contain three segments each. 

lattice is four. Each 1-molecule has eight external contacts; 
thus q1z = 8 and qzz = 6. 

The average segment fraction is given by 

3 

5 

The average area fraction of 1-molecules is given by 

zlqlz 

-- Z l f l  - 34x3 *; = - - 
X l f l  + r2r2 M x 3 + ?h x 2 

and similarly *z = 2/5. 

rlql 4 

ziqi + rzqz xiqiz + xzqzz ?h 8 + ?h 6 7 
- - - ?h - 8  - - - 8; = - 

and similarly 82 = 3/7. 
Two possible arrangements of the molecules are illustrated 

in Figure Al .  In the first figure the molecules are segregated 
in an ordered fashion, whereas in the second the molecules 
are distributed in a more random fashion. The average segment 
fractions and the average area fractions are the same in both 
figures. However, the local area fractions are different. The 
number of 1 segments about 1 segments differ in the two 
arrangements, also there are differences in the number of 1 
segments about 2 segments, the number of 2 segments about 
1 segments, and the number of 2 segments about 2 segments. 
In Figure Alb there are forty-five 1-about-1 neighbors but there 
are only three 2-about-1 neighbors. Thus the local area fraction 
811 is 45/48 and the local area fraction 021 is 3/48. 

By contrast in Figure Alb there are twenty-four 1-about-1 
interactions and twenty-four 2-about-1 interactions; thus 811 
= 24/48 and 821 = 24/48. Further, in Figure Ala, eB = 
33/36 and 812 = 3/36, whereas in Figure Alb 822 = 12/36 
and 812 = 24/36. 

This two-dimensional example illustrates the multiple num- 
ber of ways in which molecules in a binary mixture can ar- 
range themselves in space. This multiplicity (also called de- 
generacy) is reflected in the combinatorial factor of the parti- 
tion function. The combinatorial factor, in turn, is the primary 
quantity which determines the thermodynamic properties of a 
mixture. 

APPENDIX B. EVALUATION OF PURE-COMPONENT 
STRUCTURAL PARAMETERS r AND q 

The structural parameters r and q are, respectively, the van 
der Waals volume and area of the molecule relative to those of 
a standard segment. 
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where V,i and A,, are the van der Waals volumes and areas 
of the molecule given by Bondi ( 1968) and where V,, and 
A,, are the van der Waals volume and area of a standard 
segment. The choice of a standard segment is somewhat arbi- 
trary. Here it is defined as a sphere such that for a linear 
polymethylene molecule of infinite length the identity 

(z/2)(r - 9 )  = r - 1 (B3) 
is satisfied. The coordination number z is set equal to 10. The 
volume of the standard sphere in terms of its radius Rws is 
given by 

V,, = 4/3 x Rws3 (B4) 
and the area by 

A,, = 4 n Rws2 (B5) 
The van der Waals volume and area of an n-mer of poly- 

methylene are n times the volume and area of a methylene 
group as given by Bondi; that is 

(Be) Vwi = n( 10.23) cms/mole 

(B7) A,I = n( 1.35) x lo9 cm2/mole 
Substitution of Equations (Bl) ,  (B2), and (B4) to (B7) 
into (B3) as n tends to infinity yields an equation which 
fixes R,, = 10.95 x 10'5 cm/mole.+ Substitution into Equa- 
tions (B4)  and (B5) yields a standard segment volume of 
15.17 cm3/mole and a standard segment area of 2.5 x 109 
cm2/mole. Equations { B l )  and (B2) then become 

ri = V,,/15.17 (Bla) 

( B2a ) 9i = AwJ( 2.5 x 109) 

Manuscript received June 11 ,  1974; revision received October 22 and 
accepted October 23, 1974. 

10.95 x lo= 
6.023 x 10" 

stituted into Equations (B4) and (B5). 

f Per molecule Rw = cm/molecule. This number is sub- 

Two Kinds of Self-Preserving Size Spectra 
of a Cloud of Particles 

The population balances describing the time dependence of the size dis- 
tibution can, under some conditions, be transformed by means of a similar- 
ity transformation into an ordinary integro-diff erential equation containing 
two instead of three variables, If there is compatibility between the trans- 
formed equation and the constraints given by the total mass conservation 
equation and the equation for the total number of particles, a self-preserv- 
ing spectrum of the first kind can be obtained. There are, however, many 
situations such as the sintering controlled aging of supported metal cata- 
lysts, coagulation of colloidal particles in laminar shear flow, and coagula- 
tion of colloidal particles in a turbulent flow when the particles are smaller 
than the size of the smallest eddy for which, although a similarity trans- 
formation is possible, the transformed equation has no solution because of 
incompatibility with the above mentioned constraints. A second kind of 
self-preserving spectrum is suggested for these situations. The new variables 
are induced from a particular case for which an analytical result is available. 
A detailed presentation of the sintering controlled aging of supported metal 
catalysts is presented. 
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