
Local Compositions in Thermodynamic 

Excess Functions for Liquid Mixtures 
HENRI RENON and J. M. PRAUSNITZ 

University o f  California, Berkeley, California 

A critical discussion i s  given of the use of local compositions for representation of excess 
Gibbs energies of liquid mixtures. A new equation is derived, based on Scott's two-liquid 
model and on an assumption of nonrandomness similar to that used by Wilson. For the same 
activity coefficients at  infinite dilution, the Gibbs energy of mixing is calculated with the 
new equation as well as the equations of van Laar, Wilson, and Heil; these four equations give 
similar results for mixtures of moderate nonideality but they differ appreciably for strongly 
nonideal systems, especially for those with limited miscibility. The new equation contains a 
nonrandomness parameter a12 which makes it applicable to a large variety of mixtures. By 
proper selection of a12, the new equation gives an excellent representation of many types of 
liquid mixtures while other local composition equations appear to be limited to specific 
types. Consideration i s  given to prediction of ternary vapor-liquid and ternary liquid-liquid 
equilibria based on binary data alone. 

Interpolation and extrapolation of thermodynamic data 
for liquid mixtures are common necessities in chemical en- 
gineering. The model of ideal solutions is useful for pro- 
viding a first approximation and a reference, but devia- 
tions from ideality are frequently large. These deviations 
are expressed by excess functions which depend on the 
concentrations of the components and on the temperature. 

As shown by Wohl (25 ) ,  excess functions have com- 
monly been expressed by algebraic expansions of mole 
fractions with arbitrary, temperature-dependent coefficients 
which are obtained by fitting experimental data. In these 
expansions, as many terms and parameters as necessary 
are introduced in order to represent the experimental data. 

A few years a o Wilson (24)  showed that the excess 

braic function of local composition and in his final equation 
Wilson used local volume fractions. Subsequently Orye 
(11)  showed that Wilson's equation is useful for repre- 
senting equilibrium data for a wide variety of liquid mix- 
tures. 

While Wilson's equation represents one particular exam- 
ple of using local compositions, other examples can be 
readily constructed; for example, Heil (7) recently showed 
how a modified form of Wilson's equation can be used 
successfully to represent equilibria in polymer solutions. 

We present here a critical discussion of the use of local 
compositions, derive a new equation based on Scott's two- 
liquid model theor , and compare experimental data with 

vapor-liquid and liquid-liquid equilibria, including ternary 
systems. 

Gibbs energy cou gl d be conveniently expressed by an alge- 

results calculated r rom several models. We consider both 

THE WILSON AND H E I L  EQUATIONS 

To take into account nonrandomness in liquid mixtures, 
Wilson (24)  suggested a relation between local mole frac- 
tion x i 1  of molecules 1 and local mole fraction x21 of mole- 
cules 2 which are in the immediate neighborhood of mole- 
cule 1: 

(1) 
X2l x 2  exp ( - g 2 1 / R T )  

X I ~  XI exp ( - g d R T )  
-=- 

where g21 and g11 are, respectively, energies of interaction 
between a 1-2 and 1-1 pair of molecules ( g 1 2  = gzi). 
The overall mole fractions in the mixture are x 1  and xg. 

Wilson obtained an expression for the excess Gibbs en- 
ergy by analogy with the Flory-Huggins expression for 
athermal mixtures, where he replaces overall volume frac- 
tions by local volume fractions: 

gE/RT = x 1  In (511/x1) + x 2  In ( 5 2 2 h Z )  ( 2 )  

where the local volume fractions 511 and 522 are derived 
from Equation (1) : 

(3)  

(4 )  

x 1  
t i 1  = + x 2  (u2/u1)  exp ( - ( g 2 1 -  g d / W  

and 
x 2  

f 2 2  = 
x 2  + XI ( 0 1 / ~ 2 )  exp (-(glz- g 2 2 ) / f i T )  

In these equations the 0's are the molar volumes. 
Heil (7) pursued the original analogy further and pro- 

posed an expression for the excess Gibbs energy similar 
to the Flory-Huggins equation for nonathermal mixtures. 
The Heil equation was derived for polymer solutions; it 
has the following form for solutions of small molecules: 
gE/RT = XI in ( t d x ~ )  + x2 In ( 5 ' 2 2 / 4  

g z 1 -  6 1 1  g 1 2  - g 2 2  
X d 2 1  + RT x25'12 RT 

where ,521 = 1 - 511 and f12 = 1 - fz. 
Both Equations ( 2 )  and (5) are useful, semiempirical 

relations for thermodynamic excess functions; both equa- 
tions contain only two adjustable parameters per binary, 
( g 2 1  - gll) and ( g 1 2  - g 2 2 ) ,  and both are readily gen- 
eralized to solutions containing any number of components. 

However, the derivations of both equations contain two 
essentially arbitrary steps: the relation between the local 
mole fractions, Equation ( l ) ,  and the introduction of 
local compositions into the Flory-Huggins equation. A 
somewhat more satisfactory way to define and use local 
compositions is shown below. We shall return later to the 
Wilson and Heil equations. 

T H E  NONRANDOM, TWO-LIQUID E Q U A T I O N  

To define the local composition, we make an assumption 
similar to that of the quasichemical theory of Guggenheim 
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(6). To obtain an expression for the excess Gibbs energy, 
we use Scott’s two-liquid theory of binary mixtures. 

To take into account nonrandomness of mixing, we as- 
sume that the relation between the local mole fractions x21 

and xll is given by a modification of Equation (1) :  

XZI XP exp (--12g21/RT) 

X I ~  XI exp (--12gu/RT) 
-=- 

where “12 is a constant characteristic of the 
ness of the mixture. Interchanging subscripts 
also have 

~ 1 2  XI exp (-~lzglz/RT) 
xzz xz exp (- mg2dRT) 

X21 + X l l  = 1 

XI2 + X22 = 1 

-=- 

The local mole fractions are related by 

To show the similarity of our assumption 
the quasichemical theory, we take the product of Equa- 
tions (6)  and (7) (noting that glz = gzl) and obtain 

(6) 

nonrandom- 
1 and 2, we 

(7) 

(8) 

(9) 
with that of 

Equations (8) and (9), substituted into Equation ( l o ) ,  
yield 
X2IX12 = 

(1 - 3 ~ 2 1 )  ( 1  - X U )  exp (- a12 (2g12 - gu - gzz)/RT) 
(11) 

On the other hand, the assumption of nonrandomness in 
the quasichemical theory of Guggenheim (6) can be 
written as’ 

~ 2 1 x 1 2  = (1 - XZI) (1  - ~ 1 2 )  exp 

(-- 1 (2w12--11-w22)/AT) (12) 
z 

where z is the coordination number of the lattice and Wlz, 
W1l, Wzz are, respectively, the molar potential energies 
of interaction of 1-2, 1-1, and 2-2 pairs. 

Comparison of Equations (11) and (12) shows the 
similarity between the two assumptions; a12 is the substi- 
tute for l/z. However, the energies g,j in Equation (11) 
are Gibbs energies, whereas the energies Waj in Equation 
(12) are potential energies. 

As discussed by Guggenheim, the quasichemical theory 
underestimates the effect of nonrandomness in solutions. 
Since z is of the order 6-12, we expect that a12 is a positive 
constant of the order 0.1 or 0.3. Although the similarity 
between Equations (11) and (12) suggests a theoretical 
basis for our assumption [Equations (6)  and ( 7 ) ] ,  it is, 
however, different from Guggenheim’s agsumption be- 
cause we do not use a lattice model, and we consider a12 
as an empirical constant, independent of temperature. The 
physical significance of a12 becomes obscure when a12 
exceeds (approximately) 0.3. Empirically, we find values 
of a12 larger than 0.3 for some mixtures, especially for 
associated mixtures for which Guggenheim’s theory is not 
applicable. 

* Equation (4.09.1) in reference 6 p. 38, is: 
x a  = (ivl - x ) ( N ~  - xi exp ( - 2 ~ ~ 2   TI) (12.1) 

where N l N a  are the number of molecules 1 and 2 in the solution (Xz) 
the numder of 1-2 interactions, w the interchange energy defined’by 

where. in turn, WZZ, wn, and ws are the potential energies for interac- 
tions 1-2, 1-1, and 2-2 on the lattice. The term ( z w ~ i )  is the energy of 
interaction of a molecule 1 with all its neighbors in pure liquid 1. Equa- 
tion (12)  is obtained by dividing both sides of Equation (12.1) by NU% 
and introducing molar quantities in the exponential. 

2w = Z(2WIZ - W l l  - W B )  

MOLECULE 2 AT CENTER MOLECULE 1 AT CENTER 

Fig. 1. Two types of cells according to Scott’s two-liquid theory of 
binary mixtures. 

From Equations (6) and (8), we obtain for the local 
mole fraction 

X21 = (13) 
xz exp (- wz(gz1- gn) / R T )  

XI + x2 exp (- wz(gz1- gll)/RT) 
and similarly from Equations (7)  and (9) 

We now introduce Equations (13) and (14) into the 
two-liquid theory of Scott (18) which assumes that there 
are two kinds of cells in a binary mixture: one for mole- 
cules 1 and one for molecuIes 2, as shown in Fi ure 1. For 
cells containing molecules 1 at their centers, t 81 e residual 
Gibbs energy (that is, compared with the ideal gas at 
the same temperature, pressure, and composition) is the 
sum of all the residual Gibbs energies for two-body inter- 
actions experienced by the center molecule 1. The residual 
Gibbs energy for a cell containing molecule 1 at its center 
is g“) and it is given by 

xllgll 4- Xzlgzl (15) g“’ = 

If we consider pure liquid 1, x11 = 1 and x21 = 0. In this 
case, the residual Gibbs energy for a cell containing a 

molecule 1 at its center, gpllre, is (1) 

(16) 

x1zg12 + xzzg22 (17) g‘2’ = 

(18) 

(1) 
gpure = gll 

Similarly, for a cell containing a molecule 2 at its center 

and 
(2) 

gpure = gzz 
The molar excess Gibbs energy for a binary solution is 

the sum of two changes in residual Gibbs energy: first, 
that of transferring XI molecules from a cell of the pure 

liquid 1 into a cell 1 of the solution, (g - gpure)xt, and 
second, that of transferring x2 molecuIes from a celI of the 

pure liquid 2 into a cell 2 of the solution, (g gpure)r2. 
Theref ore 

(1) (1) 

(2)- (2) 

E (1) (1) (2) (2) 

Substituting Equations (8), (9), (15), (16), (171, and 
( 18) into Equation (19), we obtain 

g  XI(^ -gpnre) + x z ( g  -gpure} (19) 

gE = ~ l~z l~gz l -g i l )  + w12(g12-g22) (20) 
where x21 and 3~12 are given by Equations (13) and (14). 

We call Equation (20), coupled with Equations (13) 
and ( 14), the NRTL (nonrandom, two-liquid) equation. 
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The activity coefficients for the NRTL equation are 
found by diiierentiation of Equation (20) they are 

GENERAL FUNDAMENTAL EQUATION 

For comparison, it is convenient to generalize the Wil- 
son, Heil, and NRTL equations. To simplify the notation, 
let 

GIZ = PIZ exp (- a 1 2 d  

GZI = P Z ~  exp (- ~ I Z ~ Z I )  

(25) 

(26) 
The generalized expression for the excess Gibbs energy 
of a binary mixture is 

q [XI In (XI  + xzGzd + xz In ( X Z  + x 1 G d  I gE -=- 
RT 

+ 712G12 ] (27) 
xi + xzG21 xz + xiGiz 

The Wilson, Heil, and NRTL equations follow from 
Equation (27) by substituting for p, q, ~ 1 2  and a12 the 
values indicated in Table 1, taking i = 1 and i = 2. 

The adjustable parameters are (g12 - g22) and (gzl - 
g11). We may consider a12 as a third adjustable parameter 
or, as discussed later, set it at a predetermined value. For 
the Wilson equation, independent specification of liquid 
molar volumes is not strictly necessary since GI2 and G21 
can be taken as adjustable temperature-dependent param- 
eters. 

We now indicate some properties of Equation (27).  
The activity coefficients are found by appropriate differ- 
entiation; they are 

where ~ ~ 2 ,  721, Glz, and G2l are given, respectively, in 
Equations (23), (24), (25), and (26).  

A condition for phase instability is that for Ag', the 
molar Gibbs energy of mixing 

(Eg>, = o  

for at least one vaIue of x1 in the interval zero to one. 
Substituting Equation (25) into Equation (30), we obtain 

TABLE 1. VALUES OF p ,  4,  Pij, AND Oij  

P 4 P ij 

0 1 U,/V3 
1 1 V J V j  
1 0 1 

Equation 

Wilson 
Heil 
N R T L  

* 0111 = W C .  

+ 
1-ll +- '-' +-=O (31) 

Equation (31) immediately shows why Wilson's equa- 
tion is not compatible with phase instability. Substituting 
the parameters given in the first horizontal row of Table 
1, all terms on the left-hand side of Equation (31) are 
greater than zero and therefore Equation (31) can never 
be satisfied. As mentioned by Wilson ( 2 4 ) ,  his equation 
cannot account for partial miscibility. 

We now want to compare the Wilson, Heil, and NRTL 
equations with each other and with the van Laar equation. 
To facilitate this comparison we consider symmetric sys- 
tems. 

X1 XZ 

SYMMETRIC SYSTEMS 

1 
1 

We call those binary systems symmetric for which the 
excess Gibbs energy is not changed if we change x to 
(1 - x ) .  We also assume that v p  = ul. The condition 
for symmetr in the local composition equations is the 

(32) 

equality of t hy e parameters '12 and 721, and we note 

712 = 721 = T 

We write the van Laar equation in the form 

(33) 

where A and B are temperature-dependent parameters. 
For a symmetric system A = B, Equation (33) is then 
identical with the two-suffix Margules and Redlich-Kister 
equations. 

For the NRTL equation, we need to specify the con- 
stant a12. In our comparison, we consider two values of 
a12, namely, 0.50 and 0.25; the two corresponding equa- 
tions are designated, respectively, by NRTL (0.50) and 
NRTL (0.25). 

We define the parameter a as follows: 

a = A for the van Laar equation 
a = 27 for Heil's equation 
a = 7 for Wilson's equation and the NRTL 

All these equations become asymptotically equivalent 
for small values of the parameter a. In each case, the first 
term in the power series expansion of g E / R T  in terms of 
a is 2~~1x2.  

Figure 2 presents a comparison of the four symmetric 
equations. In all four equations, the parameters a are 
selected such that, for each one, at infinite dilution 

y1a = y2'Q = 11.0 

equation 
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gE 
RT 

0 0.5 1.0 
MOLE FRACTION X 

Fig. 2. Excess Gibbs energy and Gibbs energy of mixing for symmetric 
systems with the same activity coefficients a t  infinite dilution. 

The slopes for x = 0 and x = 1 are the same for all 
equations but, as is evident in the central part of the dia- 
gram, the excess Gibbs energy decreases in the order: van 
Laar, NRTL (0.25), Heil, Wilson, NRTL (0.50); in the 
same order, the curves become more and more flat near the 
maximum. An important consequence of this tendency is 
seen in the lower art of Figure 2, where the Gibbs en- 

:in Heil equations, ii presents a maximum and two 
cry of mixing is s [ own. For the van Laar, NRTL (0.25) 

minima; this indicates t iM at phase splitting occurs. The mu- 

Fig. 3. Activity coefficient for symmetric equimolar mixture as a 
function of activity coefficient a t  infinite dilution. 

tual solubilities are small in the case of the van Laar equa- 
tion and become larger with the NRTL (0.25) and Heil 
equations. However, the Wilson and NRTL (0.50) equa- 
tions do not show phase instability. Although all five 
equations give the same activity coefficients at infinite 
dilution, three of them predict the existence of two liquid 
phases and two of them do not. 

Figure 2 indicates a very important property of the 
local composition equations. Compared with the van Laar 
equation, and for the same nonideality at infinite dilution, 
the local composition equations have lower maxima of the 
excess Gibbs energy, thereby reducing the tendency to- 
ward immiscibility. 

Figure 3 shows how the change of curvature of the ex- 
cess Gibbs energy is related to the degree of nonideality 
of the mixture. To characterize the nonideality, we plot on 
the abscissa the logarithm of the activity coefficient at in- 
finite dilution, while on the ordinate we plot the logarithm 
of the activity coefficient for either component in an equi- 
molar mixture. A decrease of the activity coefficient in an 
equimolar mixture corresponds to a flatter excess Gibbs 
energy curve in Figure 2. The general trend shown in 
Figure 2 remains; the equations give flatter curves in the 
order: van Laar, NRTL (0.25), Heil, Wilson, and NRTL 
(0.50). This effect is not significant for nearly ideal solu- 
tions but it becomes appreciable when In y m  = 1.4 and 
it becomes increasingly important as the degree of non- 
ideality rises. When the activity coefficient at infinite 
dilution becomes very large, the activity coefficient in an 
equimolar mixture increases linearly with y m  in the van 
Laar equation, reaches a maximum in the Heil and NRTL 
equations and an asymptotic limit in the Wilson equation. 

In Figure 3 unstable liquid phases at equimolar con- 
centration are indicated by dashed lines. The minimum 
activity coefficient at infinite dilution required for phase 
instability is lowest in the van Laar equation (In y m  = 2)  
followed by the Heil equation (In 7" = 2.18); it is vari- 
able in the case of the NRTL equation, increasing from 
In y m  = 2 when "12 = 0 to In y m  = 2.94 when 0112 = 
0.426. For a12 > 0.426 phase instability does not occur 
at all. 

The activity coefficient at infinite dilution is a mono- 
tonic, increasing function of a for all the equations con- 
sidered here; therefore the parameter a is also a measure 
of the degree of nonideality of the mixture. Figure 4 
shows the variation with a of the activity coefficient of an 
equimolar mixture, indicating also the minimum value of 
u which is required for phase splitting. In Figure 4 the 

1.0 

0.8 

-G 0.6 
N 

x 

2- 0.4 - 
b 
4 0.2 

NORMALIZED PARAMETER a 
Fig. 4. Activity coefficient for symmetric mixture as a function of 

normalized parameter a. 
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relative position of the curves representing the NRTL 
equation for different values of a12 illustrates the effect 
of nonrandomness. For the same value of a, the lower ex- 
cess Cibbs energy for equimolar mixtures if a12 is larger, 
is due only to the reduction of the number of 1-2 inter- 
actions caused by the reduction of nonrandomness. Ac- 
cording to the position of their curves in Figure 4, we 
can say that nonrandomness is taken into account more 
seriously by Wilson's equation than by Heil's equation. 

NONSYMMETRIC SYSTEMS 

For the NRTL equation, unsymmetric systems are those 
where 7 1 2  is different from 721, and for the Wilson equa- 
tion unsymmetric behavior results when G12 is different 
from 6 2 1 .  For the Heil equation, lack of symmetry can 
be caused either by different molar volumes or by un- 
equal 7 1 2  and T ~ ~ .  For the van Laar equation, unsymmetric 
systems are those where A is different from B. All equa- 
tions can satisfactorily represent unsymmetric systems; 
however, the van Laar equation cannot represent systems 
where the logarithms of the activity coefficients at  infinite 
dilution have different signs. As for symmetric systems, the 
four equations are not equivalent for unsymmetric systems 
even when these equations are normalized such that for 
each component i, yim is the same for each equation. 

Turning again to the NRTL equation, the activity co- 
efficient at infinite dilution y lm depends primarily on r21, 

while yzm depends primaril on 712. For yzm > y 1 @ ,  it is 

say that the lack of symmetry of a system (more pre- 
cisely, the skewness of the Gibbs energy curve) is related 
to the difference between r12 and 721, while, for moder- 
ately unsymmetric systems, the degree of nonideality is 
related mainly to their sum. The flatness of the Gibbs en- 
ergy curve is related to 0112. 

necessary that 7 1 2  > 721 an d vice versa. Therefore we can 

REPRESENTATION OF BINARY VAPOR-LIQUID DATA 

We now turn to a comparison of calculated results with 
experimental data and we first consider binary mixtures. 
The most strongly nonideal mixtures provide the best test 
because the equations then differ most. 

Vapor-liquid data at low pressure for selected systems 
were fitted with each of the equations to show their rela- 
tive advantages. Vapor-phase nonideality corrections were 
calculated from an empirical correlation for the second 
virial coefficient (10 ) .  In all calculations the saturation 
pressures of the pure components were those reported in 
the articles from which the data are taken; they are given 
elsewhere, together with the value of the parameters (16, 
Appendix G) . To obtain the parameters, a nonlinear least- 
squares fitting program was used which minimizes the 

sum-of-squares of relative deviation in pressure plus the 
sum-of-squares of deviations in vapor phase mole fraction 
(whenever available) for all data points. The calculation 
method used is similar to the one suggested by Prausnitz 
et al. (13). 

Since deviations come from both the scatter of the data 
and from the inadequacy of the equation, they cannot pro- 
vide directly a measure of the adequacy of the equation. 
Only a comparison of the deviations obtained from dif- 
ferent equations with the same set of data gives an indi- 
cation of relative adequacy of different equations. 

We call Sy the root-mean-square deviation of experi- 
mental from calculated vapor phase mole fractions, and 6P 
the root-mean-square relative deviation of calculated from 
experimental pressures. We have calculated SP and Sy for 
a large number of isothermal vapor-liquid data and some 
isobaric data; the detailed results (16, Appendix G )  are 
summarized in Table 2, where we have grouped the sys- 
tems in the categories described below. 

Type I includes those systems where deviations from 
ideality are not large, although they may be positive or 
negative. 

( 3 3 )  
Most of the currently available vapor-liquid data fall in 
this category. We distinguish three subtypes : 

Type Ia includes most mixtures of nonpolar substances 
such as hydrocarbons and carbon tetrachloride, but mix- 
tures of fluorocarbons and paraffins are excluded. 

Type Ib includes some mixtures of nonpolar and poIar 
nonassociated liquids, for example, n-heptane-methylethyl- 
ketone, benzene-acetone, and carbon tetrachloride-nitro- 
ethane. 

Type Ic includes some mixtures of polar liquids: some 
with negative excess Gibbs energy, for example, acetone- 
chloroform and chloroform-dioxane, and some with posi- 
tive, but not large, excess Gibbs energy, for example, ace- 
tone-methyl acetate and ethanol-water. 

Table 2 shows Sy and 6P for each of these subtypes. 
The comparison indicates that all the equations are equally 
good for these systems. For the NRTL equation, the root- 
mean-s uare deviations are not affected by the value 

are usually not precise enough to indicate the nonrandom- 
ness of mixtures of this type because the effect of non- 
randomness on the shape of the excess Gibbs energy curve 
is not strong. We recommend a 1 2  = 0.30. 

Type I1 includes mixtures of saturated hydrocarbons 
with polar nonassociated liquids, as, for instance, n-hex- 
ane-acetone or isooctane-nitroethane. Phase splittin oc- 
curs at a relatively low degree of nonideality a n t  the 
nonrandomness, as measured by ( ~ 1 2 ,  is small. Values of 
Sy and SP for nine mixtures, given in Table 2, show that 

IgE (maximum)l < 0.35 RT 

selecte 2 for a12 in the range 0.2 to 0.5; vapor-liquid data 

TABLE 2. COMPARISON BETWEEN LOCAL COMPOSITION AND VAN LAAR EQUATION 
FOR REPRESENTATION OF BINARY VAPOR-LIQUID DATA 

Root-mean-squage average deviation Root-mean-square average relative 
deviation in pressure in vaDor-Dhase mole fraction 

& I  x 1000 x 1060 
Type vanLaar Heil Wilson NRTL van Laar Heil Wilson NRTL 

l a  4 
Ib 7 
Ic 7 
I1 7 
111 15 
IV 26 
V 13 
VI 10 
VII - 

4 
7 
7 
8 
7 

22 
10 
10 - 

4 
7 
7 

13 
11 
10 
5 

13 - 

4 
7 
7 
6 
7 

14 
5 

10 - 

3 3 
6 6 
9 9 
8 10 

15 4 
34 28 
16 11 
16 16 
12 13 

3 
6 
9 

21 
8 

11 
4 

21 
15 

3 
6 
9 
8 
4 

24 
5 

16 
13 

0.30 
0.30 
0.30 
0.20 
0.40 
0.47 
0.47 
0.30 
0.47 

No. of 
systems 

8 
10 
11 
9 
3 

13 
2 
2 
2 
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both the NRTL (0.20) and the van Laar equations give 
a good representation of these data; Heil’s equation is also 
quite good, but Wilson’s equation is only fair. To fit these 
data we recommend a12 = 0.20. 

Type 111 includes mixtures of saturated hydrocarbons 
and the homolog perfluorocarbons such as n-hexane-per- 
fluorc-n-hexane. Table 2 shows that the Heil and NRTL 
(0.40) equations give the best representation of the data. 
We recommend 0112 = 0.40. 

Type IV includes mixtures of a strongly self-associated 
substance, such as an alcohol with a nonpolar substance, 
like a hydrocarbon or carbon tetrachloride. The excess 
Gibbs energy curve presents a flat shape near its maxi- 
mum, and phase splitting occurs only if the activity coeffi- 
cients are very large. Values of Sy and SP for thirteen mix- 
tures of this type show that Wilson’s equation gives a very 
good fit but the Heil and van Laar equations do not. These 
systems present a high degree of nonrandomness and are 
best represented by high values of 0 1 1 ~  in the NRTL equa- 
tion; the fitting is very sensitive to the value of a12 and 
it is best to use a12 as an adjustable parameter. The opti- 
mum values of a12 are between 0.40 and 0.55. However, 
in Table 2 we have selected a common value of a12 for 
all systems of this type in order to reduce the number of 
fitting parameters to two. When experimental data are 
insufficient to justify three parameters, we recommend 
a12 = 0.47 for fitting this type of mixture.’ 

Suitable data for strongly nonideal systems, besides the 
types alread considered, are scarce. However, we tenta- 

Type V is represented by two systems of polar sub- 
stances ( acetonitrile and nitromethane) with carbon tetra- 
chloride which present a high degree of nonrandomness 
and are best fitted by the NRTL (0.47) equation and the 
Wilson equation. We recommend 0112 = 0.47. 

Type VI is represented by two systems of water plus 
a polar, nonassociated substance (acetone and dioxane) ; 
they are best represented by the van Laar and the NRTL 
(0.30) equations. We recommend a 1 2  = 0.30. 

Type VII is represented by two systems of water plus 
a polar self-associated substance (butyl-glycol and pyri- 
dine); they present a high degree of nonrandomness and 
we recommend a12 = 0.47. 

We can draw the following conclusions about repre- 
sentation of binary vapor-liquid equilibria. 

The Wilson equation is especially suitable for alcohol- 
hydrocarbon systems, but it can never predict phase split- 
ting. The Heil equation can predict phase splitting but 
provides only a small improvement over the van Laar 
equation. 

The NRTL equation gives the best fit for all types of 
mixtures by proper selection of the constant a12, taking 
into account only the nature of the binary system. It is the 
simplest of the local composition equations (it contains 
no logarithmic term in the expression of g E )  and has per- 
haps the best semitheoretical basis. When justified by the 
data, it can be used as a three-parameter equation for 
highly non-ideal systems, but it can also be used as a 
two-parameter equation by using for a 1 2  the values recom- 
mended and listed in Table 2. 

tively identi r y three more types: 

I 500- 

PROBABLE ERROR AND TEMPERATURE 
DEPENDENCE OF PARAMETERS 

As determined from vapor-liquid data and shown else- 
where (16) ,  the probable error in the parameters of the 
Heil equation is such that, for good data, the error on the 

I I I I I I 
X VAPOR-LIQUID DATA N R T L  EQ. 

LIQUID-LIQUID DATA 
I EXPERIMENTAL ERROR 

9,=0.20 - 

* As Wilson’s, the NRTL (0.47) equation does not allow phase split- 
ting, but ~t offers XeneralLy a good representation of vapor-liquid data of 
Type IV mixtures in the miscible regions. 

sum of the parameters S = (g1z - gzz)  + (gzl - gll) is 
of the order of 10 cal./mole and the error in the difference 
between the parameters D = (g12 - gzz) - (gz l  - gll) 
is of the order of 50 cal./mole. The orders of the errors in 
S and D are, respectively, 20 and 100 cal./mole for the 
parameters of the Wilson and NRTL equations. 

With the assumption that Heil’s parameters from reduc- 
tion of vapor-liquid data are independent of temperature, 
calculated and experimental enthalpies agree only qualita- 
tively. Therefore the parameters are temperature depen- 
dent. Fortunately, however, they are only weak functions 
of temperature, and, in many cases, isobaric data can be 
used to obtain useful, temperature-averaged parameters. 
These conclusions, discussed in more detail elsewhere 
( I  6) ,  also hold for the Wilson and NRTL equations. 

LIQUID-LIQUID EQUILIBRIA 

While the Wilson equation is not applicable to liquid- 
liquid systems, the Heil and the NRTL equations (a12 < 
0.426) can be used to represent thermodynamic properties 
of binary mixtures with two liquid phases. It is possible 
to calculate the parameters from experimental compositions 
of the two equilibrated liquid phases. 

Parameters for the Heil and for the NRTL (0.20) 
equations were determined over a large range of temper- 
ature up to the critical solution temperature for twelve 
liquid-liquid systems containing a polar substance and a 
hydrocarbon (they are given in reference 16);  in all cases, 
the temperature dependence of the parameters is linear 
and the parameters are consistent with parameters de- 
rived from vapor-liquid data. Therefore, for this type of 
mixture, it is possible to predict vapor-liquid equilibria by 
linear extrapolation with temperature of the parameters 
obtained from liquid-liquid data at lower temperature. 

Figure 5 shows the variation of the parameters with 

I TEMPERATURE I . LL. 

1 
0 10 20 30 40 50 60 

TEMPERATURE ‘C 
Fig. 5. Parameters for nitroethane ( 1  )-isooctane (2) system calcu- 

lated from vapor-liquid and liquid-fiquid data. 
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TABLE 3. COMPARISON OF PREDICTION OF TERNARY VAPOR-LIQUID EQUILIBRIA WITH EQUATIONS 
USING TWO PARAMETERS PER BINARY SYSTEM AND NO rERNAFiY CONSTANT 

System 

n-Hexane 
Cyclohexane 
Benzene 

n-Octane 
Isooctane 
Nitroethane 

n-Heptane 
Toluene 
Methylethyl 

ketone 

n-Heptane 
Benzene 
Ethanol 

n-Heptane 
Benzene 
Ethanol 

n-Heptane 
Toluene 
Methanol 

Benzene 
Carbon tetra- 

chloride 
Methanol 

Benzene 
Carbon tetra- 

chloride 
Methanol 

n-Hexane 
Hexene-1 
1,4-Dioxane 

Acetone 
Chloroform 
Methanol 

Acetone 
Methanol 
Methyl acetate 

Ethanol 
Ethyl acetate 
Water 

Temp., 
"C. or No. of 

pressure, data 
mm. Hg 

70 

35 

760 

760 

400 

760 

35 

55 

760 

50 

50 

760 

points 

21 

25 

39 

47 

50 

8 

6 

8 

16 

30 

35 

96 

Mean arithmetic 
deviation in vapor 
mole fraction y for 

individual component 

Heil 

-2 
3 

-1 

5 
0 

-5 

3 
2 

-5 

5 
6 

-11 

7 
9 

-16 

1 
-2 
1 

-1 

-3 
4 

-3 

-6 
9 

-1 
4 

-3 

-5 
-3 
8 

-4 
1 
3 

0 
1 

-1 

x 1,006 
Wilson 

-2 
3 

-1 

1 
7 

-8 

3 
2 

-5 

4 
2 

-6 

4 
4 

-8 

-2 
-2 

4 

0 

-3 
3 

-1 

-2 
3 

0 
3 

-3 

-5 
-3 
8 

-4 
1 
3 

10 
-7 
-3 

NRTL* 

-2 
3 

-1 

4 
0 

-4 

3 
2 

-5 

4 
2 

-6 

5 
3 

-7 

-5 
-3 
+8 

-1 

-3 
4 

-3 

-2 
5 

-1 
4 

-3 

-5 
-3 

8 

-4 
1 
3 

-4 
5 

-1 

95 % Mean relative 
Confidence 
limit in y 
x 1,000 
NRTL Heil 

4 
4 -8 
5 

4 

8 

2 
1 15 

2 

3 
4 4 
6 

7 
4 -15 
9 

4 
5 3 
8 

5 

10 16 

4 9 
7 

3 

4 11 
7 

4 
4 -11 
6 

4 
4 23 
3 

3 
7 12 
5 

7 
22 6 
17 

deviation in 
pressure 
x Lo00 
Wilson NRTL* 

-8 -7 

1.4 -6 

14 11 

14 13 

4 4 

-1 -7 

4 3 

0 2 

-10 -12 

21 23 

13 12 

-9 9 

95 % 
Confidence 

limit in 
relative 
pressure 
x 1,000 
NRTL 

2 

13 

33 

5 

9 

9 

9 

6 

9 

16 

12 

8 

Ref. 

22 

4 

20 

23 

9 

2 

17 

17 

21 

19 

19 

5 

am is selected for each binary mixture according to the values given in Table 3. 

temperature for a typical binary system. The temperature GENERALIZATION OF THE EQUATIONS 
range extends from below to above the critical solution TO MULTlCOMPONENT SYSTEMS 

indicated by the vertical lines in Figure 5. For liquid- are readily to so~utions containing any number liquid data this error iS smaller than for vapor-liquid data. of components~ The requires no additional 
It is of the order of 10 cal./mole for Heirs parameters assumption; all the local compos~tion equations considered 
and 20 cd./mole for parameters in the Wilson and NRTL here take into account only Wo-body interactions and 
equations* The temperature dependence of the Parameters therefore the assumptions needed for 3, 4, ... component 
cannot be neglected in this case. Within experimental solutions are the same as those for binary solutions. 
error, however, the parameters derived from vapor-liquid For a multicomponent solution, let xji stand for the local 
data are consistent with those derived from liquid-liquid mole fraction of molecule j and let xk i  stand for the local 
data. mole fraction of molecule k in the immediate neighborhood 
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of molecule i. These two local mole fractions are related 
by 

For a multicomponent solution, the excess Gibbs energy is 
N 

k = l  

(35) 
where N is the number of components in the system and 

( 3 6 )  

( 3 7 )  

7 J 1  = (g , l  - gtl) /AT 

Gji = pJ1 exp (- aj17,J 

We can obtain the Wilson, Heil, and the NRTL equa- 
tions for multicomponent solutions by giving the values 
listed in Table 1 to p ,  q, ph3 and aiJ. 

coefficient is obtained by appropriate dif- The activit 
ferentiation o r Equation (35) : 

N 

I k='l k=l 

PREDICTION OF TERNARY 
VAPOR-LIQU ID EQU ILI BRlA 

With the local composition equations, prediction of 
the properties of multicomponent systems is possible with- 
out any additional ternary or higher order parameters. 
For the NRTL equation, the excess Gibbs energy is de- 
rived from the two-liquid theory by taking into account 
only two-body interactions; there is no need to introduce 
higher-order interactions in the treatment of multicom- 
ponent systems when they were neglected for binary 
mixtures. 

Table 3 presents a comparison of experimental vapor- 
phase mole fractions and total pressures with calculated 
results using only two fitting parameters determined from 
each of the binary data. For the NRTL equation, the val- 
ues of a12 are selected according to the rules given earlier. 

We compare the mean arithmetic deviations in the 
vapor mole fractions (absolute) and total pressures (rela- 
tive) for the three local composition equations. These 
quantities are a measure of the accuracy of the prediction 
of the ternary equilibria. We indicate also 95% confidence 
limits for the NRTL equation, as suggested recently by 
Adler et al. (1). 

The results indicated in Table 3 lead to conclusions 
which parallel those reached from fitting binary systems. 

For systems of type I, where the deviations from ideal- 
ity are not too large, all equations give similar results. In 
Table 3 systems belonging to this type are n-hexane-cyclo- 
hexane-benzene, n-hexane-hexene-1-dioxane, n-heptane- 
toluene-methylethylketone, acetone-chloroform-methanol, 
and acetone-methanol-methylacetate. 

For type 11 systems, which have immiscible regions, the 
Heil equation and the NRTL equation are better than the 
Wilson equation. In Table 3 systems belonging to this type 
are n-octane-isooctane-nitroethane and ethanol-ethylace- 
tate-water. 

For systems of type IV, mixtures of alcohols and non- 
polar liquids, the Wilson and NRTL equations give the 
best predictions. In Table 3 systems of this type are n-hep- 
tane-benzene-ethanol, n-heptane-toluene-methanol, and 
benzene-carbon tetrachloride-methanol. 

From these results we conclude that the NRTL equation 
is a good and general equation for prediction of ter- 
nary vapor-liquid equilibria using only data for binary 
mixtures; a suitable value of a12 can be selected inde- 
pendently for each binary system. 

Table 4 shows a comparison of the NRTL equation with 
the Wohl equation. The results for the Wohl equation are 
taken from Adler et al. ( 1 ) .  These authors use a three- 
parameter Wohl equation of the Margules type for fitting 
the binary data. When they use the best ternary constant 
to fit the experimental ternary data, they obtain the re- 
sults listed in Table 4. (They show that it is also possible 
to use the same value of the ternary constant for all these 

TABLE 4. COMPARISON OF NRTL AND WOHL EQUATIONS 
FOR PREDICTION OF TERNARY VAPOR-LIQUID EQUILIBRIA 

Mean arithmetic 
deviation in 

individual 
components 95% Confidence 
vapor mole limits in vapor 

fraction mole fraction 
x 1000 x 1000 

NRTL Wohl NRTL Wohl 
(with no (with best (with no (with best 
ternary 

System constant) 

n-Heptane 
Toluene 
Methyl-ethyl ketone 

n-Heptane 
Benzene 
Ethanol 

n-Heptane 
Benzene 
Ethanol 

760 mm. Hg 

400 mm. Hg 

n-Heptane 
Toluene 
Methanol 

Benzene 
Carbon tetrachloride 
Methanol 35°C. 

Benzene 
Carbon tetrachloride 
Methanol 55°C. 

Acetone 
Chloroform 
Methanol 

Acetone 
Methanol 
Methyl acetate 

Ethanol 
Ethyl acetate 
Water 

3 
2 

-5 

4 
2 

-6 

5 
3 

-7 

-5 
-3 

8 

-1 
-3 

4 

-3 
-2 

5 

-5 
-3 

8 

-4 
1 
3 

-4 
5 
1 

ternary ternary ternary 
constant) constant) constant) 

3 
-4 

1 

0 
8 

-8 

0 
-5 

5 

8 
-2 
-6 

-13 
3 

10 

-15 
7 
8 

-11 
11 
0 

-9 
8 
1 

-6 
1 
5 

2 8 
1 5 
2 8 

3 4 
4 7 
6 8 

7 4 
4 7 
9 a 

4 14 
5 8 
8 19 

5 22 
4 20 
7 39 

3 21 
4 13 
7 29 

4 18 
4 8 
3 12 

3 12 
7 15 
5 8 

7 22 
22 57 
17 49 
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7 L 

d \ rC.- NRTL 

" 
(MOLE PER CENT) 

Fig. 6. Calculated and observed liquid-liquid equilibria for the sys- 
tem isooctane (I)-n-hexane (2)-furfural (3) at  30°C. 

systems usually with a small loss of accurac in the pre- 

eters are used for the binaries and no ternary constant is 
introduced. As shown in Table 4, both the mean arithme- 
tic deviations and the confidence limits are better for the 
NRTL equation than for the Wohl equation even with 
optimized ternary constants. 

dictions.) For the NRTL equation only two i tting param- 

LIQUID-LIQUID TERNARY EQUILIBRIA 

Using the Heil equation, we can predict ternary liquid- 
liquid equilibria (solubility curve and tie lines) from bin- 
ary data (vapor-liquid or liquid-liquid) in a limited num- 
ber of cases. Good prediction is obtained when mutual 
solubilities are not too small (> 5 % mole fraction). Plait 
points are predicted within about 10% mole fraction. Be- 
cause of the maximum indicated in Figure 3, the Heil 
equation (for monomeric systems) does not apply when 

V V V V 

(WEIGHT PERCENT) 
Fig. 7. Calculated and observed liquid-liquid equilibria for the 

system chloroform (1 )-acetone (%water (3) at 25°C. 

- EXPTL. 
c- HElL 
C-- NRTL 

Fig. 8. Calculated and observed liquid-liquid equilibria for the rys- 
tern n-octane (l)-octene-1 (2l-nitroethane (3) at  0°C. 

two components of strong1 nonideal mixtures have very 

carbons). 
The NRTL equation, on the contrary, is generally ap- 

plicable. It is possible to predict liquid-liquid ternary 
equilibria from binary data if the best value of a12 for 
each binary is chosen. 

If binary vapor-liquid data are used, the resulting pre- 
diction depends on the quality of the data and on the right 
selection of a12. For binary systems whose components are 
essentially immiscible, "12 has to be estimated. It appears 
that al2 = 0.20 is suitable for such systems. Generally, the 
precision of the parameters obtained from vapor-liquid 
equilibria is not sufficient to predict accurately the tie 
lines, because, as we have seen, the error in the difference 
of the parameters is large. Liquid-liquid data are much 
more sensitive to the values of the parameters (and es- 
pecially to the difference between the parameters) than 
are vapor-liquid data. Therefore the use of tie-line data 
to calculate some binary parameters is preferable because 
the precision is better; also experimental determination is 
easier. Whenever possible, parameters obtained from re- 
liable mutual solubilities are preferred for the prediction 
of multicomponent phase equilibria. Liquid-liquid ternary 
results are also rather sensitive to the value of q2 chosen 
for the most nonideal binaries. 

Figure 6 to 8 illustrate typical agreement between ex- 
perimental data (12, 8, 1 5 )  and results calculated with 
the NRTL equation and, when applicable, with the Heil 
equation. In all cases, (rI2  is selected according to the rules 
given above. The solubility curve and the tie lines are 
calculated with the use of binary parameters only. 

small mutual solubilities ( Y or example, water and hydro- 

CONCLUSION 

Two major conclusions result from our comparison of 
the local composition equations for the representation of 
the excess Gibbs energy of liquid mixtures. 

Considerin , at first, binary mixtures, it appears that 
binary data for many different types of mixtures cannot 
be represented with the same two-parameter equation. 
Even if the activity coefficients at infinite dilution are the 
same for two different mixtures, it does not follow that the 
activity coefficients at other concentrations are even ap- 
proximately the same if the mixtures belong to different 
types. A very sensitive test of mixture type is provided by 
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the existence or nonexistence of immiscibility for a given 
level of nonideality of the dilute solutions. In  order to ob- 
tain a satisfactory representation of the properties of 
binary liquid mixtures, many authors have proposed em- 
pirical or semiempirical equations with three or more ad- 
justable parameters; for example, Wohl ( 2 5 )  , Redlich- 
Kister (13), and Black (3) have given expressions with 
three (or more) adjustable parameters to provide a classi- 
fication of liquid mixtures. However, the precision of the 
experimental data frequently does not justify the use of 
three adjustable parameters. The NRTL equation uses 
only two adjustable parameters but it contains a third con- 
stant, selected according to the chemical characteristics of 
the components of the mixture, to provide the flexibility 
required for representing the shape of the excess Gibbs 
energy. 

Turning to mukicomponent mixtures, it is desirable to 
be able to predict the excess Gibbs energy from binary 
data alone. This should be possible if, as is probable, two- 
body interactions make the largest contribution to the ex- 
cess properties. However, previously recommended expres- 
sions based on three-parameter equations for binary sys- 
tems require either some ternary data or, additional simpli- 
fying assumptions. The new equation, based in a semi- 
empirical way on the two-liquid theory of Scott, can be 
extended to the multicomponent case without introducing 
any additional assumptions; it appears to predict well 
ternary vapor-liquid and liquid-liquid equilibria without 
requiring a ternary constant. 

The computation methods used in this work are outlined 
in Appendix K of reference 16 with a listing of computer 
programs to obtain the parameters in the NRTL equation 
for binary mixtures by fitting vapor-liquid data or by using 
mutual solubilities and to predict multicomponent vapor- 
liquid equilibria and ternary liquid-liquid equilibria. 

NOTATION 

a 
A,B 
D 

Gji 
k 
N 
P 
4 
R 
S 

T 
V 

W 

w12 
w12 
Xi 
Xij 

X 

= normalized parameter for symmetric systems 
= van Laar constants 
= difference between parameters; D = (glz - 

= Gibbs energy per mole 
= Gibbs energy for a cell containing molecule 1 
= energies of interaction between an i-i pair of 

= coefficient as defined in Equation (37)  
= Boltzmann’s constant 
= number of molecules 
= coefficient (0 or 1) as defined in Table 1 
= coefficient (0 or 1) as defined in Table 1 
= gas constant 
= sum of parameters; S, = (g12 - gz2) + (gzl - 

= absolute temperature 
= molar volume 
= interchange energy 
= potential energy for an interaction 1-2 on a lattice 
= molar potential energy of interaction 
= overall mole fraction of substance i 
= local mole fraction of molecule i in the immediate 

= number of 1-2 interactions divided by z 

& z )  - (g21 - g11) 

molecules 

gllf 

neighborhood of molecule f 

y = vapor mole fraction 
z = lattice coordination number 

Greek Letters 

aij 
AgM = Gibbs energy of mixing per mole 

= nonrandomness constant for binary ii interactions 

y = activity coefficient 
8 

tij 
pij 

~ j i  
T 

Superscripts 

E = excess 
00 = infinite dilution 

= root-mean-square deviation between calculated 
and experimental property 

= local volume fraction of molecule i in the imme- 
diate neighborhood of molecule j 

= coefficient as defined in Table 1 
= coefficient as defined in Equation (36) 
= normalized parameter for symmetric systems 

Subscript 

i = component i 
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