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Tin-Based Amorphous Oxide: A High-Capacity 
Lithium-lon-Storage Material 

Yoshio Idota, Tadahiko Kubota, Akihiro Matsufuji, 
Yukio Maekawa, Tsutomu Miyasaka* 

A high-capacity lithium-storage material in metal-oxide form has been synthesized that 
can replace the carbon-based lithium intercalation materials currently in extensive use 
as the negative electrode (anode) of lithium-ion rechargeable batteries. This tin-based 
amorphous composite oxide (TCO) contains Sn(Il)-O as the active center for lithium 
insertion and other glass-forming elements, which make up an oxide network. The TCO 
anode yields a specific capacity for reversible lithium adsorption more than 50 percent 
higher than those of the carbon families that persists after charge-discharge cycling when 
coupled with a lithium cobalt oxide cathode. Lithium-7 nuclear magnetic resonance 
measurements evidenced the high ionic state of lithium retained in the charged state, in 
which TCO accepted 8 moles of lithium ions per unit mole. 

Lithium-ion insertion materials have 
gained considerable attention because 
they can be used as an active electrode in 
Li-ion rechargeable batteries, which have 
potential applications ranging from porta- 
ble electronic devices to electric vehicles. 
Until 1980, Li metals and alloys were used 
as anode (negative electrode) materials in 
combination with various solid-solution 
cathode materials (1) in Li-ion batteries. 
From 1985 onward, the sole alternative to 
the Li metal anode, adopted to overcome 
safety problems, were carbon-based Li-ion 
intercalation materials (2), which intro- 
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duced the concept of a "rocking-chair" 
type of rechargeable battery. Lithium ions 
are reversibly stored between layered car- 
bon frameworks, which thereby develop 
an electrochemical potential relative to 
the Li/Li+ anode low enough to act as 
negative electrodes. There have been im- 
portant improvements in the Li-storage 
capacity of carbon materials that allow it 
to exceed the stoichiometric limit of Li- 
ion intercalation in graphite (LiC6), 372 
milliampere-hours per gram (mAhour/g) 
of C6 (3). The possibility of creating high- 
capacity anodes that leapfrog this limit has 
been demonstrated with the deep doping 
of Li (4, 5). A significant trade off occurs, 
however, with regard to the ability to 
guarantee the safety of high-capacity an- 
odes after repeated charge-discharge oper- 
ations, which often cause the formation of 

hazardous metallic Li (dendrite) on the 
electrode surface (6). 

We have synthesized an amorphous 
metal-oxide material that can store Li ions 
with a Coulombic capacity reaching that 
of hydrogen-storage alloys, ensuring pro- 
tection against dendritic Li formation. 
The amorphous material is a metal com- 
posite oxide glass that contains tin(II) 
oxide as an active center for Li adsorption. 
It provides a gravimetric capacity of >600 
mAhour/g (0.022 mol of Li per gram) for 
reversible Li adsorption and release, which 
corresponds in terms of reversible capacity 
per unit volume to more than 2200 
mAhour/cm3 (0.075 mol of Li per cubic 
centimeter). The latter value is about 
twice the reversible capacity of state-of- 
the-art high-capacity carbon materials 
(840 to 1200 mAhour/cm3) (5). 

The tin-based composite oxide (TCO) 
active material has a basic formula repre- 
sented by SnMxOy, where M is a group of 
glass-forming metallic elements whose to- 
tal stoichiometric number is equal to or 
more than that of tin (x - 1) and is 
typically comprised of a mixture of B(III), 
P(V), and AIII). In the oxide structure, 
Sn(II) forms the electrochemically active 
center for Li insertion and potential de- 
velopment, and the other metal group pro- 
vides an electrochemically inactive net- 
work of-(M-O)- bonding that delocalizes 
the Sn(II) active center. To confer high 
reversibility in Li storage and release, the 
Sn-O framework was thus anisotropically 
expanded by incorporating glass-forming 
network elements-B, P, and Al-in view 
of the enhancement of Li-ion mobility in 
the anisotropic glass structure, favorable 
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for ionic diffusion and release. For synthe- 
sis, powders of SnO, B203, Sn2P2O7, and 
A1203 were mixed and grained at a molar 
ratio of Sn:B:P:Al = 1.0:0.6:0.4:0.4. The 
powder mixture was heated to 1 100?C for 
more than 10 hours in an alumina crucible 
under flowing argon to invoke the reac- 
tion in a molten state. The resulting prod- 
uct was then quenched to room tempera- 
ture at a cooling rate of 100 to 20?C per 
minute to yield a transparent yellowish 
glass. The glassy material has the formula 
Sni.OBO.56PO40A10.4203.6 (named TCO-1), 
as analyzed by inductively coupled plasma 
atomic emission spectrometry. Active ma- 
terials of various element ratios were also 
prepared in the same manner and were 
milled to yield white powders (Fig. 1). 

Our x-ray diffraction analysis for the 
powders of TCO products established the 
noncrystalline (amorphous) state of these 
glassy materials (Fig. 2). A broad band of 
weak diffraction was observed, peaking at 
around 20 = 27? to 280, without concom- 
itance of any diffraction line assigned to 
crystalline forms. This distribution is char- 
acteristic of SnO-based oxide glasses stud- 
ied for SnO-SiO2 systems (7). Radial dis- 
tribution analysis shows that the broad 
peak corresponds to a radius range of 3.0 
to 4.5 A, attributable to statistical distri- 

Fig. 1. Bulk tin-based composite oxide (TCO) ac- 
tive material (left). It is a yellowish transparent glass 
with a density of 3.7 g/cm3. Crushing the glass 
provides a white powder of active material (right) 
capable of Li insertion for use in the negative elec- 
trode of Li-ion rechargeable batteries. The pow- 
der typically has a surface area of 0.6 m2/g, as 
measured by the Brunauer, Emmett, and Teller 
(BET) technique. 

0 

0 . 

0CU 

-n 

10 20 30 40 50 60 70 
20 (degrees) 

Fig. 2. The x-ray diffraction spectrum of TCO-1 
under Cu Ka radiation. Only a weak diffraction 
distribution is observed with a peak at 20 = 270 to 
280, which is a characteristic of SnO-containing 
glass and reflects a distribution of Sn-Sn distanc- 
es in the anisotropic matrix. The Li-absorbed 
charged state of TOO-i gave essentially the same 
amorphous profile. 

bution of the Sn-Sn distance rather than 
the Sn-O distance (2.2 A in SnO). Mor- 
phological analysis of TCO glass by scan- 
ning electron microscope and energy-dis- 
persive x-ray spectroscopy techniques es- 
tablished the homogeneity of the glass 
composition that follows the starting mix- 
tures. Structurally, TCO is supposed to 
consist of homogeneously and anisotropi- 
cally dispersed Sn-O core sites surrounded 
by a random network array of B203, P205, 
and A1203. The density of TCO-1 was 
3.70 g/cm3, which is less than the theoret- 
ical value of 3.9 to 4.1 g/cm3 calculated 
from a crystalline model and 60% greater 
than that of graphite (2.26 g/cm3). 

The Li storage capacity of TCO was 
investigated by means of electrochemical 
insertion of Li ions into TCO, with use of 
a button-type cell with a Li-metal coun- 
terelectrode (containing 6 mol % Al) 
serving as a Li-ion source. The TCO pow- 
der (average grain size of 5 to 10 jum) was 
mixed with a polytetrafluoroethylene 
(PTFE) powder as a binder and an elec- 
troconductive carbon powder in a weight 
ratio of 83:2:15, respectively, and was 
compressed into a pellet (thickness, 0.07 
mm; area, 1.33 cm2; weight of contained 
TCO, 20.8 mg). The TCO pellet and 
0.6-mm-thick Li electrode were mounted 
in a button cell with a polypropylene sep- 
arator sheet sandwiched between both 
electrodes. A nonaqueous electrolyte solu- 
tion was used that consisted of ethylene 
carbonate (EC) and diethylcarbonate 
(DEC) in a volume ratio of 1:1; the elec- 
trolyte consisted of 1 mol of LiPF6 per liter 
of solution. The cell was fabricated in a 
dry-air environment and was tightly 
shielded against ambient moisture. 

The charge-discharge capacity of TCO 
was examined at room temperature. The 
cell was charged (Li inserted) to 0 V and 
discharged (Li released) to 1.20 V at a 
constant current of 1 mA. The curve (Fig. 
3) shows that TCO working in the low- 
potential range (0 to 1.2 V versus Li/Li') 
is suitable for use as negative-electrode 
active material in Li-ion batteries. In the 
initial cycle, the charging capacity for 

Li-ion storage reached 1030 mAhour/g, 
which corresponds to about 8 equivalent 
mole of Li ions per unit mole of TCO. 
Subsequent Li-release processes up to 1.2 
V yielded a Coulombic capacity of 650 
mAhour/g (5 mol of Li released), accom- 
panied by a 37% loss of the initial dis- 
charge efficiency (8). The latter capacity 
holds for succeeding cycles with nearly 
100% Coulombic efficiency without caus- 
ing a significant increase in electrode 
resistance. 

The obtained reversible Li-ion storage 
capacity, >600 mAhour/g, gives a specific 
capacity per unit volume of >2200 
mAhour/cm3, which corresponds to near- 
ly twice the level of existing state-of-the- 
art carbon materials (< 1200 mAhour/ 
cm3 and <500 mAhour/g) (3). This ex- 
tremely high capacity of TCO compares 
well with those capacities of hydrogen- 
storage alloys as represented by AB5-type 
compounds such as LaNi5. They give 
<2400 mAhour/cm3 (9) according to the 
stoichiometric limit of one atom of hydro- 
gen for each atom of metal. In contrast, 
TCO is capable of accepting eight ions of 
Li per Sn atom, 

Other TCO materials of different ele- 
ment molar ratios-Sn:B:P:Al such as 
1.0:0.4:0.4:0.3, 1.0:0.5:0.5:0.4, 1.0:0.6: 
0.5:0.1, and 1.0:0.5:0.4:0.1-yielded es- 
sentially the same charge-discharge profile 
(10), although their Li storage capacities 
were dependent on the net content of 
Sn(II). The Sn-O bond apparently provides 
the core site that contributes to the active 
charge-discharge of Li species. Control ma- 
terials free of Sn, comprising a glass-forming 
network of B, P, and Al only, gave substan- 
tially zero capacity (1 1). 

Lithium-7 nuclear magnetic resonance 
measurements (7Li-NMR) were conducted 
to elucidate the state of the Li ion inserted 
in the TCO. The 7Li-NMR spectra of 
Li-inserted TCOs evidenced no single me- 
tallic bands in the course of cathodic 
charging of TCOs down to 0.06 V versus 
Li/Li'. Figure 4A shows a typical 7Li- 
NMR spectrum of TCO at a Li insertion 
level of Li/Sn = 8 [charging of 1000 

Fig. 3. Cycling of electrochemical Li insertion 1.5 
(charge) and release (discharge) on TCO-1 

(Sn1. 0B56P0.40A.4203.6) at a constant current of 1.0. 
1 mA per 20.8 mg of TCO-1, conducted at room c _j 
temperature between the voltage limits of 0 V (in- > 0.5 
sertion) and 1.2 V (release) versus a Li counter- 

co 

electrode. The cell voltage and its limits are values > (-* 1000 mA.hours/g 
monitored by the external circuit (they are not 
equivalent to OCV). The electrochemical cell 0 20 40 60 80 100 120 
comprised a TCO-mounted working electrode Charge-discharge cycle time (hours) 
and Li counterelectrode dipped in an electrolyte composition containing EC and DEC (1 :1) as solvents 
and LiPF6 as the electrolyte. Data were extracted for the first four cycles. After the second cycle, insertion 
and release were entirely reversible, as the prolonged cycle test demonstrates (Fig. 5). 
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mA hour/g, open circuit voltage (OCV) 
versus Li/Li+ of 0.06 V]. This deep level of 
Li doping produced a chemical shift of 10 
parts per million (ppm), small enough to 
assign the Li residing in the TCO matrix 
to a highly ionic state. We compared the 
NMR chemical shift of TCO with those of 
pure SnO and Sn metal (both in crystal- 
line form) (Fig. 4B) as a function of the Li 
insertion depth (Li/Sn molar ratio); it is 
evident from the large chemical shifts that 
Li insertion into crystalline SnO of isotro- 
pic structure tends to form metallic Li to 
an extent close to the case of Sn-Li alloy 
formation in Sn metal. 

On the basis of the above analysis, it is 
appropriate to look into the molecular struc- 
ture of the Li-inserted state of TCO. It is 
considered that the participation of Li-ion 
coordination in reversible charge-discharge 
reactions takes place at the bonding orbital 
of Sn-O, accompanied by partial electronic 
reduction of both Sn(II) and Li+, but not 
forming a state of metallic Li, as evidenced 
by 7Li-NMR data (12). The chemical poten- 
tials of these Li ions, which determine their 
charge-discharge equilibrium potentials, may 
not be equivalent as a result of discrepancies 
in the Sn-Li separation and in the electronic 
densities of Sn and Li, both being affected by 
the surrounding metal oxide components. 
The anisotropic random network of the glass 
structure accounts for why there is a wide 
potential distribution in Li uptake and re- 
lease as exhibited by the gentle slope in the 
charge-discharge curve (Fig. 3). 

The charge-discharge cyclability of 
TCOs as anode materials of a practical 

"rocking-chair" type of rechargeable battery 
was assessed by adopting a LiCoO2 elec- 
trode as a Li-intercalating cathode active 
material. In this test, a TCO anode with the 
composition Sn1.OBo.5PO5Al04MO. 03.7 was 
chosen, where M is an alkaline metal 
(such as potassium) mixed in the glass 
matrix as a dopant to reinforce cyclability 
(13). We prepared LiCoO2 powder (aver- 
age particle size, 6 pm) by calcining a 
powder mixture of Co3O4 and Li2CO3 
(Co/Li molar ratio = 1.0) at 800?C for 8 
hours and formed it into a conducting 
pellet with a PTFE binder and acetylene- 
black powder. The LiCoO2-based cathode 
was combined with the TCO-based anode 
at an optimized mass ratio to effect Li 
insertion balance. The battery thus fabri- 
cated was subjected to a charge-discharge 
cycle over a voltage window between 4.1 
and 2.8 V. This cycling test showed that 
90% of the initial reversible capacity of 
the battery was retained after 100 cycles 
(Fig. 5). These results corroborate that, 
along with LiCoO2, the TCO-based oxide 
anode performs highly reversible and sta- 
ble charge-discharge reactions and is suit- 
able as an anode in high-energy recharge- 
able batteries. 

The large Coulombic capacity and 
good cyclic durability of TCO, backed by 
the safe Li-storage mechanism, provides a 
powerful tool in the design of rechargeable 
batteries whose capacity exceeds that of 
nickel hydride batteries (400 Whours/li- 
ter) that use hydrogen-storage alloys of the 
largest capacity. The TCO anode can suc- 
cessfully be coupled with several available 

Fig. 4. (A) Nuclear magnetic reso- 18 
nance spectrum (NMR) of 7Li for 16 B 
TCO after Li insertion to a molar ra- l 14 
tio Li/Sn = 8. The Li was electro- 12 
chemically inserted into TCO in the 1 10 C,) 

cell composition as in Fig. 1. (B) 'a 8, 
Chemical shifts of 7Li-NMR spectra 200 100 0 -100 -200 o 2 6 
for TCO (0) and reference materials Chemical shift (ppm) 4 2 
Sn metal (A) and SnO (C]) as a func- 2 

tion of Li/Sn molar ratio in the course of electrochemical Li 0 1 2 3 4 5 6 7 8 9 10 
insertion. Measurement was carried out at room temperature Molar ratio Li/Sn 
on a NSL-300 NMR spectrometer (Nippon Bruker) using LiCI as a standard. The results demonstrate the 
highly ionic state of Li being retained in TCO up to Li/Sn = 8, in contrast to Sn and SnO, which cause 
large chemical shifts. 

Fig. 5. Cyclability of a TCO (anode)/EC+DEC+LiPF6/LiCoO 
(cathode) "rocking-chair" type of battery (solid line). The battery r 100 
was charge-discharge cycled over a cell-voltage window of be- 0 
tween 4.1 V (charge) and 2.8 V (discharge) at a constant current 0 

corresponding to 0.5 C (15) (2 mA per 6.3 mg of discharged t 60 
mass of TCO). In this cycling, voltage limits are controlled on the .> 40 
basis of OCV while charging and circuit voltage (including a a 20 
voltage loss by net resistance) while discharging; the limit voltage 0 . o 
of charge corresponds to 0.10 V versus Li+/Li as the potential of 0 20 40 60 80 100 
the TCO anode. This result is compared with reference data Number of cycles 
(dashed line) for a similar battery in which the anode active material was replaced with a SnO powder, 
which, as revealed by the 7Li-NMR experimental data (Fig. 4), lacks the ionic stability of Li. 

cathode active materials, including Li- 
CoO2, LiNiO2, LiMn204, and LiMnO2 
(14). Using cylinder-type batteries with a 
series of TCO-based anodes and LiCoO2 
cathodes, we have thus far confirmed that 
batteries possessing an output voltage of 
2.5 to 4.2 V, an energy density of 420 
Whours/liter, and good cyclic durability 
are feasible. 
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