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A simple technique is described for calculating the adsorption equilibria for components 
in a gaseous mixture, using only data for the pure-component adsorption equilibria a t  the 
same temperature and on the same adsorbent. The proposed technique i s  based on the concept 
of an ideal adsorbed solution and, using classical surface thermodynamics, an expression 
analogous to Raoult’s law is  obtained. The essential idea of the calculation lies in the recogni- 
tion that in an ideal solution the partial pressure of an adsorbed component is given by the 
product of i ts  mole fraction in the adsorbed phase and the pressure which it would exert as a 
pure adsorbed Component a t  the same temperature and spreading pressure as those of the 
mixture. Predicted isotherms give excellent agreement with experimental data for methane- 
ethane and ethylene-carbon dioxide on activated carbon and for carbon monoxide-oxygen and 
propane-propylene on silica gel. The simDlicitv of the calculation, which requires no data for . .  
the mixture, makes i t  espec‘ially useful for engineering applications. 

Adsorption equilibria are required in the design of 
heterogeneous chemical reactors and in certain types of 
separation equipment. In many cases the desired equi- 
libria are for a mixed rather than for a pure gas, and it is 
therefore of considerable practical interest to develop a 
technique for estimating the adsorption equilibria of a 
gaseous mixture from the known adsorption isotherms of 
the pure components. Such a technique is described here. 
The principal idea on which the proposed technique is 
based is the proper definition of an ideal adsorbed solu- 
tion in a manner analogous to that used for liquid-phase 
solutions. As shown towards the end of this work, the 
equations developed from the ideal-solution concept pre- 
dict adsorption isotherms which are in excellent agreement 
with experimental adsorption data for gaseous mixtures. 

A complete review of the current status of mixed-gas 
adsorption is given in the excellent monograph by Young 
and Crowell (12). The usual procedure for the interpreta- 
tion of experimental adsorption equilibria for a gaseous 
mixture is to compare the experimental data with the pre- 
diction of some theoretical model. Most models for physi- 
cal adsorption contain two or three parameters, and it is 
usually assumed that the parameters for mixture adsorp- 
tion can be written as some simple function of the pure- 
component parameters and the composition of the ad- 
sorbed phase. Thus, a determination of the pure-compo- 
nent parameters from experimental data permits the pre- 
diction of mixture adsorption equilibria. 

Unfortunately, the above procedure has not been very 
successful; the predictions have not been in quantitative 
agreement with the experimental data ( 2 )  and often not 
even in qualitative agreement ( 1 ) .  

An alternative procedure for interpreting mixture data 
is the liquid entropy model of Arnold ( 1 ) .  In this model, 
it was proposed that Raoult’s law should be obeyed but 
only for adsorption sites having the same heat of adsorp- 
tion, Using two additional assumptions, Arnold proposed 
a method for calculating mixture data from pure compo- 
nent adsorption isotherms. The disadvantages of the liquid 
entropy model are that it is thermodynamically inconsist- 
ent and that separate numerical integrations are required 
for each vapor composition. 

When one considers these facts, it is surprising that the 
valuable concept of an activity coefficient, which has 
proved to be useful in correlating and interpreting other 
types of equilibria, has not yet been applied to the case of 
mixed-gas physical adsorption. It is shown in this work 
how the concept of an activity coefficient can readily be 
introduced for the case of mixture adsorption equilibria. 

A. L. Myers is at the University of Pennsylvania, Philadelphia, Penn- 
sylvania. 

The thermodynamics of physical adsorption has been 
thoroughly discussed by Hill ( 4 ) .  The validity of the 
usual thermodynamic equations for the adsorbed phase 
rests upon three assumptions: 

1. The adsorbent is assumed to be thermodynamically 
inert; that is the change in a thermodynamic property of 
the adsorbent, such as internal energy, during an adsorp- 
tion process at constant temperature is assumed to be 
negligible compared with the change in the same prop- 
erty for the adsorbing gas. 

2. The adsorbent possesses a temperature-invariant area 
which is the same for all adsorbates. This assumption 
would not be valid, for example, for a molecular sieve 
adsorbent, where the area available for adsorption depends 
on the size of the adsorbate molecule. 

3. The Gibbs definition of adsorption applies; this defi- 
nition corresponds to the usual volumetric technique of 
obtaining experimental adsorption isotherms. In most prac- 
tical cases, the volumetric technique gives the same ex- 
perimental results as other methods (the gravimetric 
measurement of adsorption, for example). 

The above assumptions are implicit in almost all theories 
of physical adsorption. These details have been empha- 
sized here to indicate the generality of the theory to be 
discussed below. With this thermodynamic model, the 
basic thermodynamic equations for the adsorbed phase 
emerge in a form perfectly analogous to the familiar ther- 
modynamic equations for a real fluid. To write these 
equations for the adsorbed phase, it is necessary only to 
substitute spreading pressure T for pressure P and to 
substitute area A for volume V. For example, the equa- 
tions for the internal energy U and the Gibbs free energy 
G of the adsorbed phase are 

d U  = TdS -&A + Sp+dni  

dG = - S d T  + Ad= + Sp,dn, 

(1) 

( 2 )  

Thus, the intensive variables for the Gibbs free energy 
are the temperature, spreading pressure, and composition. 
This dehition of a free energy has the advantage that 
the free energy may be written as 

G = Xntp, (constant rn and T )  (3) 

Equation ( 3 )  follows directly from Euler’s theorem. 
For the adsorbed phase, the work term analogous to 

PdV mechanical work for a three-dimensional fluid is TdA. 
The spreading pressure is the negative of the familiar sur- 
face tension and has units of dynes per centimeter. In 
physical adsorption, iT is positive (even for a multilayer 
adsorption) ; therefore the system does work on the sur- 
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rounding during the conceptual process of increasing the 
area of the adsorbent. 

There is no experimental technique for measuring the 
spreading pressure directly, similar to the mechanical 
measurement of the surface tension of a liquid. But it 
must be emphasized that spreading pressure is as much a 
fundamental thermodynamic variable as entropy or in- 
ternal energy. There is also no way to measure the en- 
tropy of adsorption directly, but this fact does not alter 
the usefulness of the entropy concept. 

It is therefore important to distinguish the thermody- 
namic variable spreading pressure from its interpretation 
by a particular physical model. The thermodynamic vari- 
able spreading pressure is defined in Equation (1) as the 
intensive variable for the work term. This thermodynamic 
spreading pressure can always be calculated from the ex- 
perimental adsorption isotherm (as shown later) and is 
independent of any particular physical model of the ad- 
sorbed phase. 

As an example, the two-dimensional gas model ( 3 )  sug- 
gests that the adsorbate molecules exert a mechanical 
force which might, in principle, be capable of experimen- 
tal measurement. Thus, in the two-dimensional gas model, 
an ideal gas law is obeyed at low surface coverages (6) : 

VA = n,RT (4)  
On the other hand, the localized model of adsorption as- 
sumes that adsorbed molecules are not free to translate 
parallel to the surface and are attached to sites on the 
adsorbent surface. In this model, it is difficult to conceive 
a way of measuring a mechanical force parallel to the 
surface; yet the same ideal gas law given by Equation 
(4)  can be shown to apply at low surface coverage (6).  

ACTIVITY COEFFICIENTS 

In Equation ( 2 )  the intensive variables are P, T ,  and 
composition. The authors now propose that activity coeffi- 
cients for a mixed adsorbed fluid be defined in the same 
way as that used in the usual thermodynamic treatment 
of a fluid mixture. Thus, the molar Gibbs free energy 
change upon mixing at constant T and ?T is given by 

The superscript m signifies the change due to mixing at 
constant T and P; that is for any extensive molar thermo- 
dynamic property w 

g" ( T ,  P, xl, . . .) = RT 8xt In yLxt ( 5 )  

w ~ ( T , P , ~ ~ ,  . . .) = w ( T , P ,  X I , .  . .) -Lx~ W ~ ' ( T , P )  
(6) 

where toto is the molar value of the variable for pure i at 
spreading pressure P and temperature T ,  and w is the 
molar value of the variable for the mixture of composition 
XI, . . .) x,. 

With the activity coefficients defined in Equation ( 5 ) ,  
the other thermodynamic functions for the change upon 
mixing at constant P and T are obtained in the same way 
as that used in the usual thermodynamic treatment of a 
fluid mixture. Thus 

=.=i 

- RT" Lxi (%) 
'ag" 

a"' ( T ,  P, xl, . . .) = (-) = RT 2x4 (*) aP T.ri P , * <  

(7) 

( 8 )  
Equations (3) ,  (5) ,  and (6) may be combined to yield 

pt ( T ,  T, xl, . . .) = g L o  ( T ,  T) + RT In yixi (9) 
In Equation (9),  gLo is the molar Gibbs free energy of 
component i, when i is adsorbed in the absence of the 

other components, at  the temperature T and at the spread- 
ing pressure 7 ~ .  Since there are only 2 deg. of freedom 
for the adsorption of a pure component, the pressure P 
in the gas phase is uniquely determined by specification 
of T and T, and 

gi"( T ,  P) = g,O ( T )  + RT In Pt" (P) (10) 
In Equation ( l o ) ,  the standard state free energy g<"(T)  
is defined as the molar Gibbs free energy of component i 
at the perfect gas state and at a pressure of 1 atm. 

In Equation (10) and the derivation to follow, it is 
assumed that the gas phase obeys the perfect gas law, 
both for the adsorption of the pure components and for 
the adsorption of the mixed gas. The pressures of interest 
in most experimental studies of adsorption are usually 
less than 1 atm.; therefore, this is usually an excellent ap- 
pr oximation . 

Substituting Equation (10) into Equation (9) one gets 

pt ( T ,  P, xl . . .) = gio( T )  + RTln Pt"(r)  RT In ylxl 
(11) 

Equation (11) gives the chemical potential for the ad- 
sorbed phase. The chemical potential for the gas phase, 
with the same reference state, is 

p i ( T ,  P ,  yt) = g L o ( T )  + RT In Pyt (12) 
When one uses the equilibrium criterion that the chemical 
potential in the adsorbed phase is equal to the chemical 
potential in the gas phase, Equations (11) and (12) yield 
the equation of equilibrium for mixed-gas adsorption: 

Pyc = P t o ( ~ ) y l x L  (constant T )  (13) 
At high pressures, Equation (13) can be derived in a 

similar way, with the result 
Py& = f t o  (n )y t x i  (constant T )  (14) 

THERMODYNAMIC CONSISTENCY 

The Gibbs adsorption isotherm ( 4 )  is 
-A& + Lntdpr = 0 (constant T )  (15) 

(16) 

(17) 

At constant spreading pressure, Equation ( 15) becomes 

Substituting Equation (11) into Equation (16) one gets 

Equation (17) is the Gibbs-Duhem equation for an 
adsorbed phase at constant temperature and spreading 
pressure. In the case of the usual binary equilibria, such 
as vapor-liquid equilibria, it is actually impossible to vary 
the composition while holding the temperature and pres- 
sure constant because there are only 2 degrees of freedom. 
But in the case of adsorption, the area of the adsorbent 
becomes an additional thermodynamic variable. A similar 
situation arises for the equilibria of small liquid drops, 
where a specification of droplet size is necessary to define 
the thermodynamic system. The pertinent additional in- 
tensive variable for the equilibria of liquid droplets is 
surface tension; similarly, the spreading pressure becomes 
an additional intensive variable for adsorption equilibria. 
The phase rule for adsorption is 
(degrees of freedom) = (number components) - 

Lx& = 0 (constant T and T) 

Pxc d In y r  = 0 (constant T and T) 

(number phases) + 3 (18) 

The absorbent is not counted as a component in Equation 
(18) since it is assumed to be thermodynamically inert. 
Thus, for binary adsorption equilibria there are 3 degrees 
of freedom. Unlike the case for vapor-liquid equilibria, 
Equation (17) for adsorption does not encounter the im- 
possibility of holding two intensive variables constant and 
varying the composition. 
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CALCULATION OF ACTIVITY COEFFICIENTS 

The calculation of an activity coefficient, from Equation 
(13),  requires the following experimental data: the total 
pressure of the gas-phase mixture, the composition xf of 
the adsorbed phase, the composition y, of the gas phase, 
the spreading pressure w for the adsorbed mixture, and 
the pure-component adsorption isotherms for each adsorb- 
ate. 

For a pure component, integration of Equation (15) 
gives 

h"' = 0 (23) 

am = 0 (24) 

(constant T )  

where nco (P.,") is the adsorption isotherm for pure com- 
ponent i. Since nio is directly proportional to P," at low 
surface coverage, the integral of Equation (19) is well 
defined at the lower limit. The integral may be evaluated 
graphically by plotting n,"/Pc" vs. Pa0 and determining 
the area beneath the curve. Thus, Equation (19) can be 
used to calculate w(Pco) from the experimental adsorp- 
tion isotherm for pure i. 

But the spreading pressure w for the experimental mix- 
ture point must be known in order to calculate the activity 
coefficient from Equation (13).  For the case of adsorp- 
tion of a binary mixture, Equation (15) yields 

(constant T )  
With the pressure P of the mixture held constant, Equa- 
tion (21) becomes 

A 
-&= wd In yl + RT In yz 

(constant T and P) 

Thus, to calculate the spreading pressure T for the experi- 
mental mixture point of interest, experimental data are 
needed at constant temperature and pressure for the entire 
range of vapor compositions. Such data permit the integra- 
tion of Equation (21) for the spreading pressure at  a 
given vapor composition. Such a calculation completes the 
information necessary for the calculation of an activity 
coefficient. 

It is apparent from the above discussion that very ac- 
curate experimental data would be required for the ac- 
curate calculation of an activity coefficient by means of 
Equation (13). 

THE IDEAL ADSORBED SOLUTION 

In the case of an ideal solution, such that the activity 
coefficient is equal to unity for all values of T ,  w, and x ~ ,  
Equation (13) simplifies to 

Pyl = P," (T) xc (constant 2') (22) 

Therefore, for an ideal adsorbed solution, there is no en- 
thalpy change and no area change upon mixing at constant 
temperature and spreading pressure. Equation (24) can 
be combined with Equation (6)  to yield 

a = xl + aao x2 (constant T and T) (25) 
or 

1 Xl xa - _ -  - + 2 (constant T and w )  (26) 
nt nlo 

where G" is the amount of component 1 adsorbed at 
spreading pressure v and temperature T in the absence of 
component 2. (The above and subsequent equations are 
written for the special case of binary adsorption, but 
they may readily be extended to the multicomponent 
case.) 

A relative volatility ax,, may be defined by 

In adsorption work, a selectivity coefficient has been 
defined (2) : 

d y ,  P," 1 

x 2 / 9  Pl" a . 2  
(28) - - sl,z 2 - - - - - 

The selectivity coefficient sl,a for component 1 is greater 
than unity if component 1 is the more strongly adsorbed; 
the relative volatility C Y ~ , ~  of component 1, however, is 
greater than unity if component 1 is the Iess strongly ad- 
sorbed of the two gases. 

Equation (22) yields, for a binary mixture 

P = P:xl + P,"% 

Thus, all of the relationships for the ideal adsorbed soh- 
tion are of the same form as the well-known equations for 
ideal vapor-liquid equilibria. 

(29) 

A SPECIAL CASE, VERY LOW SURFACE COVERAGE 

treatment of adsorption (6) gives 
At very low surface coverage a statistical mechanical 

and 

Thus, at very low surface coverage, the amount of pure 
component adsorbed is directly proportional to the pres- 
sure, and the amount of component i adsorbed in the ad- 
sorption of mixtures is directly proportional to the partial 
pressure in the gas phase. In Equations (30) and (31),  
K ,  is the Henry's law constant, a function only of tempera- 
ture. Substituting Equation (30) into (19) one obtains 

The analogy with Raoult's law for vapor-liquid equilibria 
is clear, but there is the subtle difference in the meaning 
of Pf". In the case of vapor-liquid equilibria, P," is the 
vapor pressure of the pure saturated liquid i at the tem- 
perature of the solution; here p , " ( ~ )  is the equilibrium 
gas-phase pressure corresponding to the solution tempera- 
ture and to the solution spreading pressure w for the ad- 
sorption of pure component i. Thus Pfo(w) can be thought 
of as the pure adsorbate vapor pressure for compoQent i 
at the temperature T and spreading pressure w of the 
mixture. 

Equation (17) indicates that the adsorption ideal solu- 
tion (rl  = 1) is thermodynamically consistent. Further- 
more, Equations (7)  and (8) reduce to 

At constant T and T, Equation (32) yields 

KIP," = IGP," (33) 
and 

-=---=- P: K,  - 4 P y z  yJX1 (34) 
P," K,  nl/Pyl yZ/m 

Furthermore 

(35) 1 Zl XZ Xl x, -=-+-=- +- 
nr nr n, GO %a 
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" PRESSURE, P 2 
Fig. 1. Calculation of mixture adsorption 
equilibria from pure component spreading 

pressures. 

When Equations (34) and (35) are compared with Equa- 
tions (26) and (27), it is evident that the equations for 
the ideal adsorbed solution are rigorous for the special 
case of low surface coverages. 

CALCULATION OF ADSORBED S O L U T I O N  EQUILIBRIA 

The calculation of the isothermal mixture adsorption 
equilibria proceeds as follows: 

1. Equation (19) is applied to the experimental data 
for pure-component adsorption nro = F c  (P,") , yielding 
two relationships: 

7r,. = $1 (P,.) (36) 

7r: = $2 ( P 2 O )  (37) 
2. Equation (22) is written for both components: 

Pyl = P,"X, 

Pyz = P,"x, 
(38) 

(39) 
3. Since the mixing process indicated by Equation (17) 

is carried out at constant 7r 
0 

7r1 = 7rz (40) 

(41) 

(42) 
5. There are nine unknowns: T:, T/, P,", Pzo, P, x,, M, 

y, and 9%. Equations (36) through (42) are seven inde- 
pendent equations. By specifying two independent quan- 
tities, such as P and y,, it is possible to calculate all of the 
other variables. 

6. The total amount adsorbed nt can be calculated by 
means of Equation (26) since the experimental data for 
pure-component adsorption give the values of nlo and n2" 
corresponding to the known values of P," and P,". 

For the special case when the pure-component adsorp- 

4. Also 
XI  + x* = 1 

y 1  + yz = 1 

I I I I I I 
(CALCULATED FROM EXPERIMENTAL ADSORPTION 

ISOTHERMS OF SZEPESY 8 ILLES (1963)) - 
E < 80 
2 60 
a. 

0 " 
- 40 - 

0 - . ~ .  

PRESSURE, mrn Hg 

o EXPERIMENTAL DATA OF 
SZEPESY ILLES (1963) 

W I I I 1 
5 0 0.2 0.4 0.6 0.8 1.0 

MOLE FRACTION C2H6 IN GAS PHASE 

Fig. 3. Prediction of equilibrium gas- and 
adsorbed-phase compositions by ideal solution 

theory, methane-ethane mixtures. 

tion isotherms can be fitted empirically by an analytic 
equation of the form 

nI0 = F ,  ( P4') (43) 
the procedure described above yields an analytic relation- 
ship between P, yl, and x,: 

In general, a graphical procedure may be employed as 
shown in Figure 1. Points A and D are selected arbitrarily, 
except that point D must lie on the horizontal line AC 
between the points B and C. The selection of point D 
specifies the pressure of the mixture. I t  is easy to verify 
the following lever-rule relations from Equations (27) 
and (29) : 

length of line DE 
" = length of line FE 

length of line DC 
length of line BC 

(45) 

(46) XI = 

MOLE FRACTION CH41N GAS PHASE 

Fig. 2. Spreading pressure for methane and ethane on activated Fig. 4. Prediction of moles adsorbed by ideal 
corbon. solution theory, methane-ethane mixtures. 
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0 02  04 06  08 10 
x,,MGLE FRACTION OXYGEN 

IN ADSORBED PHASE 

Fig. 5. Prediction of adsorption of carbon monoxide-oxygen mixtures 
on silica a t  100°C., total pressure = 1 atm. 

PREDICTION OF MIXED-GAS ADSORPTION EQUILIBRIA 
USING THE IDEAL-SOLUTION CONCEPT 

The original intention of this work was to calculate ac- 
tivity coefficients from the available experimental adsorp- 
tion equilibria and then to interpret the resulting activity 
coefficients by a suitable theory. Surprisingly, the calcu- 
lated activity coefficients were found to be equal to unity 
within the experimental error. I t  was therefore possible to 
predict mixed-gas adsorption equilibria from the pure- 
component adsorption isotherms. These predictions were 
found to be in quantitative agreement with the experimen- 
tal data. 

For example, consider the experimental pure-component 
adsorption isotherms for methane and ethane on activated 
carbon at  20°C. (9, 10). With these experimental pure- 
component adsorption isotherms used, the spreading pres- 
sure (actually, ?rA/RT) was calculated by graphical inte- 
gration of Equation (19) ; the result is given in Figure 
2 for both pure gases. With the procedure described in 
the previous section, the mixed-gas adsorption equilibria 
were calculated for a total pressure of 1 atm. The (y-x) 
diagram is given in Figure 3. The solid line is the predic- 
tion based on ideal solution theory, and the circles are the 
experimental points (11). Even though ethane shows 
strong preferential adsorption, the ideal solution prediction 
is in quantitative agreement with the experimental results. 
Figure 4 shows the prediction of the amount of each com- 
ponent adsorbed as a function of the mole fraction of 
methane in the gas phase. The agreement with experimen- 
tal data is excellent. 

Markham and Benton (8) measured the adsorption 
equilibria of carbon monoxide-oxygen mixtures on silica 
at lOO"C., at  a total pressure of 1 atm. Figure 5 compares 
the ideal solution prediction with the experimental data. 
These experimenters also measured the same adsorption 
equilibria at 0°C. The comparison of the ideal solution 
prediction (solid line) with the experimental data for 0°C. 
(8) is given in Figure 6. 

Lewis et al. (7) measured the adsorption equilibria of 

- IDEAL SOLUTION 

x ,  ,MOLE FRACTION OXYGEN 
IN ADSORBED PHASE 

Fig. 6. Prediction of adsorption of carbon monoxide-oxygen mixtures 
on silica a t  OT., total pressure = 1 atrn. 

r 0 0 2  0 4  06 0 8  I 
X I  ,MOLE FRACTION PROPANE 

IN ADSORBED PHASE 

Fig. 7. Adsorption of propane-propylene mixtures on silica gel a t  
25"C., totol pressure = 1 atm. 

propane-propylene mixtures on silica gel at 25°C. for a 
total pressure of 1 aim. The comparison of the prediction 
of ideal solution theory with the experimental data is given 
in Figure 7. 

Finally, Bering and Serpenskii (2) studied the entire 
equilibrium surface for the adsorption of carbon dioxide- 
ethylene mixtures on activated carbon at  25.4"C. These 
authors fitted the Langmuir equation (6) to the pure- 
component isotherms and then calculated the mixture ad- 
sorption equilibria using the Langmuir model for mixtures. 
The Langmuir model explained the qualitative features of 
the mixture adsorption equilibria, but the predictions 
were not quantitative. These authors also noted that the 
Langmuir equation for mixture adsorption was not thermo- 
dynamically consistent. One difficulty, however, not men- 
tioned by these authors was that the Langmuir equation 
provided a rather poor fit of the pure-component adsorp- 
tion isotherms. The prediction of the adsorption ideal 
solution theory is given in Figure 8 for the amount ad- 
sorbed; the calculations were made for total pressures of 
50, 150, and 250 mm. Hg. The (y-x) diagram predicted 
by ideal solution theory (solid line) is given in Figure 9 
for the total pressures 50 and 200 mm. Hg. Finally, the 
selectivity coefficient for ethylene, calculated by Equation 
(28),  is given in Figure 10. Bering and Serpenskii con- 
cluded that the selectivity depended on the total pres- 
sure, but from their data they could not detect any varia- 
tion with the gas-phase composition. The adsorption ideal 
solution theory, however, predicts a small composition 
dependence for the selectivity coefficient of ethylene. The 
solid lines on Figure 10 indicate that the maximum value 
of the selectivity coefficient occurs when the gas-phase 

A o EXPERIMENTAL DATA OF '.2k BERING 8 SERPlNSKll (1952) 

MOLE FRACTION C2H4IN GAS PHASE 

Fig. 8. Prediction of moles adsorbed by ideal 
solution theory, ethylene-carbon dioxide mix- 

tures. 

Vol. 11, No. 1 A.1.Ch.E. Journal Page 125 



% 1.0 

8 0.8 
I 
P 
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I- 
2 0.2 
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(L 
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a 0 0.2 0.4 0.6 0.8 1.0 
MOLE FRACTION C2H4 IN GAS PHASE 

Fig. 9. Prediction of equilibrium gas- and 
adsorbed-phase compositions by ideal solution 

theory, ethylene-carbon dioxide mixtures 

composition approaches pure carbon dioxide, and the 
minimum occurs when the gas phase has a large excess 
of ethylene. 

CONCLUSIONS 

The predictions of the adsorption ideal solution theory 
are in quantitative agreement with the experimental data 
for a wide variety of gas mixtures and for different hetero- 
geneous adsorbents. No mixture parameters were used to 
make these predictions; the predictions are based entirely 
on the pure-component adsorption isotherms. 

Although there are no ternary (or higher) adsorption 
equilibria available in the literature, the ideal solution 
theory for adsorption can be directly applied to multi- 
component systems. 

Predictions based on the ideal solution concept require 
that the pure-component adsorption isotherms be meas- 
wed accurately at low surface coverage, because the inte- 
gration for spreading pressure is sensitive to this portion 
of the pure-component adsorption isotherm. 

On the basis of physicochemical considerations it is very 
surprising that mixture adsorption equilibria should be so 
closely approximated by the concept of an ideal solution. 
The only way to explain this result is to compare the pre- 
dictions of a realistic statistical mechanical model with 
those of an ideal solution. Unfortunately, no such model 
exists at the present time; the adsorbents which have been 
studied are highly heterogeneous, but the existing models 
are for a homogeneous surface. Two pertinent comments 
can be made: 

1. The adsorption equilibria for mixtures are consider- 
ably affected by surface heterogeneity, just as in the case 

I I I I 
I - 8  z w BERING 8 SERPlNSKll(1952) 

o EXPERIMENTAL DATA OF 

TOTAL PRESSURE, mm Hg 

Fig. 10. Prediction of ideal solution theory: 
selectivity coefficient varies with vopor com- 

position and total pressure. 

of pure-component adsorption isotherms. Therefore, 
mixed-gas adsorption equilibria on a homogeneous surface 
(which have not yet been studied experimentally) may 
actually exhibit more nonideal behavior than those on a 
heterogeneous surface. 

2. The mixtures studied so far exhibit significant but 
not excessive deviation from ideal behavior in the case of 
vapor-liquid equilibria. Further experimental study may 
reveal mixtures containing highly dissimilar components 
which may show appreciable nonideality on heterogeneous 
surfaces. For engineering purposes, however, it is very 
fortunate that the ideal solution equations appear to do 
such an excellent job of predicting mixed-gas adsorption 
equilibria, since these equations are very simple to use 
and require no mixture data. 
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A 
u 
fZ0(v) = equilibrium fugacity for pure i corresponding to 

F+ = adsorption isotherm function for pure component 

G = Gibbs free energy of adsorbed phase 
g = molas Gibbs free energy of adsorbed phase 
h = molar enthalpy 
K ,  = Henry’s law constant for adsorption of pure i 
nc = number of moles of component i in adsorbed 

nt = total number of moles in adsorbed phase per unit 

Pi” (T) = equilibrium pressure for pure i corresponding to 

P = total pressure 
R = gas constant 
S 
sl,* 

component 2 
T = absolute temperature 
t = dummy variable 
U 
w 
x4 
y, 
Greek Letters 
a1,2 
y+ 

pi 
T = spreading pressure 
4, 
$ = function 

Superscripts 
rn 

and T 
o = standard state 

Subscripts 
i = component i 

= specific area of adsorbent 
= specific area per mole of adsorbate 

spreading pressure T 

i 

phase per unit mass of adsorbent 

mass of adsorbent 

spreading pressure T 

= entropy of adsorbed phase 
= selectivity coefficient for component 1 relative to 

= internal energy of adsorbed phase 
= any extensive molar property 
= moIe fraction of component i in adsorbed phase 
= mole fraction of component i in gas phase 

= volatility of component 1 relative to component 2 
= activity coefficient of component i in adsorbed 

= chemical potential of component i 

= vapor-phase fugacity coefficient of component i 

phase 

= change of property upon mixing at constant T 
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Lateral Transport in a Fluidized-Packed Bed: 

Part I. Solids Mixing 
JOHN D. GABOR 

Arganne Notional Lobarotory, Argonne, Illinois 

A theory was developed to relate the average velocity of a fluidized particle to the fluidizing 
gas velocity and the minimum fluidization velocity. The development of this relationship was 
based on a model for particle movement caused by gas bubbles rising through the fluidized 
bed. The diffusivity for lateral solids mixing in a fluidized-packed bed can then be determined 
from the average particle velocity and the diameter of the fixed packing by the random 
walk theory. 

The advantages of a fluidized bed over a packed bed as 
a reactor lie in the movement of the fluidized particles. 
The moving particles of the fluidized bed transport essen- 
tially all of the heat (1, 12, 13, 14), whereas heat trans- 
fer in the packed bed is essentially by the gas eddies (7) .  
Because the volumetric heat capacity of solid particles is 
much greater than that of gas, the heat content and hence 
heat transport by fluidized particles is greater. The fluid- 
ized particles also disturb surface gas films to increase 
mass transfer (14). The fluidized-packed bed provides a 
means of utilizing the advantages of fluidized particles in 
packed-bed reactors. Chemical reactors employing inert 
solids fluidized in the interstices of a static packed bed of 
larger bodies undergoing an exothermic gaseous reaction 
have been demonstrated to provide good reaction control 

Particle movement in a fluidized-packed bed is in the 
form of streams of aggregates flowing vertically which are 
laterally deflected by the fixed packing. The mean dis- 
tance a that a particle is deflected by a sphere in the x 
direction (the direction of diffusion) is DJw, and the 
time 6 between contacts of the fluidized particle at veloc- 
ity u with the fixed packing arranged rhombohedrally is 
0.909 D,/u ( 4 ) .  The lateral solids mixing diffusion coeffi- 
cient D can be related to and 6 by Einstein’s ( 3 )  ran- 
dom walk diffusion equation to yield 

(5, 8). 

The 
lateral 

D = 1/2 (ax“/@) = 1/2 0.909 D, 
= 0.0558 D,u 

random walk theory indicates the mechanism of 
Darticle movement and relates the rate of lateral 

solids ;king to the size of the fixed packing but does not 
indicate the effect of the physical properties of the fluid- 
ized particles and fluidizing gas on the solids mixing. A 
model is presented which reveals the effect of gas and 

solids properties on the mixing by relating the average 
particle velocity to the fluidizing gas velocity and mini- 
mum fluidization velocity. Experimental data are then 
correlated in terms of the model. 

M O D E L  FOR RELATING AVERAGE PARTICLE VELOCITY 
TO T H E  FLUIDIZING GAS VELOCITY 

The analysis of Rowe (8) and co-workers has shown 
that the particles are transported by the drag forces in the 
wake of bubbles rising through the fluidized bed. This 
concept was used as the basis of a model for particle 
movement. The model adopted here is defined by these 
assumptions: 

1. Gas flow in excess of the minimum velocity required 
for fluidization forms bubbles; that is the volumetric rate 
of bubble formation is (W - Wn%,) .  

2. The ratio of the volume of particles moved by the 
bubbles to the volume of the bubbles is a constant F for a 
given particle-gas system; that is the volumetric rate of 
particles in motion is equal to F (W - W m f )  for par- 
ticles of a particular size. This assumption is equivalent to 
asserting that F is independent of bubble size as well as 
frequency. 

From the above assumptions the volumetric rate of par- 
ticles per unit area dragged by gas flow through the bubble 
(average particle velocity) can be expressed as 

The volume F’ of particles moved will depend upon the 
force exerted on the particles (drag force) and the weight 
of each particle. Rowe and Henwood (10) have shown 
that the drag coefficient for a particle in an array of sur- 
rounding particles is 68.5 times the drag coefficient for an 
isolated particle. On this basis, Rowe (9) has shown that 
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