

Comment on "New Calix[4]arene Appended Amberlite XAD-4 Resin with Versatile Perchlorate Removal Efficiency"

Yuh-Shan Ho*

Water Research Centre, Asia University, Taichung 41354, Taiwan

J. Chem. Eng. Data 2013, 58 (10), 2819–2827. DOI: 10.1021/je400554q

R ecently, Memon et al. published the paper entitled as above.¹ In the section Adsorption Kinetics, authors presented a pseudo-second-order kinetic equation as follows.

$$\frac{t}{q_t} = \left(\frac{t}{k_2 q_e^2}\right) + \left(\frac{1}{q_e}\right)$$

This pseudo second-order model is not correct. The pseudosecond order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been presented by Ho in 1995.² The pseudo-second order kinetic model has a nonlinear form $q_t = (q_e^2 kt)/(1 + q_e kt)$ and four linear forms such as $(t/q_t) = (1/kq_e^2) + (1/q_e)t$, $(1/q_t) = (1/kq_e^2)(1/t) + (1/q_e)$, $q_t = q_e - (1/kq_e)(q_t/t)$, and $(q_t/t) = kq_e^2 - kq_e q_t$.³ The model was also used in numbers of adsorption systems in subsequent years.⁴ A review of second-order models for adsorption systems gave more details.⁵

In order to stop the proliferation of the mistake, comments have been made in *Water Research*,⁶ *Carbohydrate Polymers*,⁷ *Journal of Radioanalytical and Nuclear Chemistry*,⁸ and *Industrial Crops and Products*.⁹ Citing the original paper not only respects the work of the authors who presented a novel research idea but also discussed this idea in detail in the body of their paper.¹⁰ In my view, Memon et al. should have cited the original paper for the kinetic model and thereby provided greater accuracy and information details about the kinetic expression they employed.

AUTHOR INFORMATION

Corresponding Author

*Tel.: 886 4 2332 3456 ext. 1797. Fax: 886 4 2330 5834. Email: ysho@asia.edu.tw.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Memon, S.; Bhatti, A. A.; Memon, N. New Calix[4]arene appended Amberlite XAD-4 resin with versatile perchlorate removal efficiency. *J. Chem. Eng. Data* **2013**, *58* (10), 2819–2827.

(2) Ho, Y. S. Adsorption of heavy metals from waste streams by peat. Ph.D. Thesis, 1995, University of Birmingham, Birmingham, UK.

(3) Ho, Y. S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. *Water Res.* **2006**, 40 (1), 119–125.

(4) Ho, Y. S. Comment on "Sorption of basic dyes from aqueous solution by activated sludge" [J. Hazard. Mater. 108 (2004) 183–188]. J. Hazard. Mater. 2004, 114 (1–3), 241–245.

(5) Ho, Y. S. Review of second-order models for adsorption systems. *J. Hazard. Mater.* **2006**, *136* (3), 681–689.

(6) Ho, Y. S. Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. *Water Res.* 2004, 38 (12), 2962–2964.
(7) Ho, Y. S. Comment on "Microwave synthesized xanthan gum-gpoly(ethylacrylate): An efficient Pb²⁺ ion binder" by Sadanand Pandey and Shivani B. *Mishra. Carbohydr. Polym.* 2013, 95 (1), 508.

(8) Ho, Y. S. Comments on the paper "Sorption of radionickel to goethite: Effect of water quality parameters and temperature" by Hu et al. *J. Radioanal. Nucl. Chem.* **2011**, *287* (3), *987*.

(9) Ho, Y. S. The real pseudo-second-order rate equation. *Ind. Crop. Prod.* **2014**, *52*, 17.

(10) Ho, Y. S. Untitled. Adsorpt. Sci. Technol. 2011, 28 (5), 465.

Received:February 17, 2014Accepted:March 10, 2014Published:May 27, 2014

ACS Publications © 2014 American Chemical Society

dx.doi.org/10.1021/je5001632 | J. Chem. Eng. Data 2014, 59, 2131-2131