

Comment on "Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose"

Yuh-Shan Ho*

Water Research Centre, Asia University, Taichung County 41354, Taiwan

S^{*ir*: Recently, Zhou et al. published a paper entitled "Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose".¹ The authors presented the idea of "initial adsorption rate" without citing appropriate references, and thus, are in the position of committing possible plagiarism in the article.}

In section 3.5, "Effects of Contact Time on Adsorption and Adsorption Kinetics", the authors noted that, "when $t \rightarrow 0$, the adsorption rate is denoted as h and is calculated as"

 $h = k_2 q_e^2$

The definition of initial adsorption rate for the adsorption systems of divalent metal ions using sphagnum moss peat has been presented by Ho,² and this expression was also published in 1996.³ A modified equation was presented in 1998, because a mistake was included in the previous paper that was published in 1996.^{4–6} Citing the original paper not only respects the authors who presented a novel idea in research, but also directs readers to the details of the original work.⁷ Plagiarism is defined as when the authors of a scientific publication duplicate previously published ideas, text, or figures in the scientific literature without any citation.⁸

In my view, Zhou et al. should have cited the original paper for the initial adsorption rate, thereby providing greater accuracy and detailed information about the initial adsorption rate expression that they employed.

AUTHOR INFORMATION

Corresponding Author

*Tel.: 886 4 2332 3456, ext. 1797. Fax: 886 4 2330 5834. Email: ysho@asia.edu.tw.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Zhou, Y. M.; Zhang, M.; Wang, X. H.; Huang, Q.; Min, Y. H.; Ma, T. S.; Niu, J. Y. Removal of crystal violet by a novel cellulosebased adsorbent: Comparison with native cellulose. *Ind. Eng. Chem. Res.* **2014**, *53*, 5498.

(2) Ho, Y. S. Adsorption of heavy metals from waste streams by peat. Ph.D. Thesis; University of Birmingham: Birmingham, U.K., 1995.

(3) Ho, Y. S.; Wase, D. A. J.; Forster, C. F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. *Environ. Technol.* **1996**, *17*, 71.

(4) Ho, Y. S.; McKay, G. Sorption of dye from aqueous solution by peat. *Chem. Eng. J.* **1998**, *70*, 115.

(5) Ho, Y. S.; McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood. *Process Saf. Environ. Prot.* **1998**, *76*, 183.

(6) Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. *Process Biochem.* **1999**, *34*, 451.

(7) Ho, Y. S. Comments on "Removal and recovery of Cu(II) and Zn(II) using immobilized *Mentha arvensis* distillation waste biomass. *Ecol. Eng.* **2010**, *36*, 832.

(8) Noè, L. F.; Batten, D. J. 'Publish or perish': The pitfalls of duplicate publication. *Palaeontology* **2006**, *49*, 1365.

Published: January 19, 2016