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Simulated pseudo-second-order kinetic adsorption data were analyzed by different methods of least-squares
regression. The methods used were non-linear regression and four linearized forms of the pseudo-second-
order equation. The simulated data were compromised with three different homoskedastic and
heteroskedastic error distributions. In the presence of all types of error distributions, non-linear regression
was the most robust method and provided the most accurate and efficient estimates of the kinetic
parameters.
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1. Introduction

Adsorption is the most commonly used technique for the treatment
of industrial wastewaters. For practical applications of adsorption such
as process design and control, it is important to model the adsorption
rate and to establish the time dependence of adsorption systems under
various process conditions. Many mechanistic models have been
suggested to describe the adsorption kinetics. Two-resistance models,
such as the film-solid model [1], the film-pore model [2], and the
branched pore model [3], give detailed analysis of the adsorption
dynamics. However, these models are presented as partial differential
equations and their solution needs dedicated computer programs and
extensive computer time. Therefore, it is impractical touse thesemodels
in industrial-plant simulations because in industry it is preferred tohave
more simple relations that can be solved quickly and easily. Even in the
area of research, most researchers prefer to use simple lumped kinetic-
models to analyze their experimental results. At thepresent time, Boyd's
film-diffusion [4] and Weber's intraparticle-diffusion [5] are the two
most widely used models for studying the mechanism of adsorption.
However, in spite of their apparent simplicity, the application of both
the film-diffusion and the intraparticle-diffusion models often suffers
from uncertainties caused by the multi-linear nature of their plots [6].

Another approach to the modelling of adsorption kinetics is the
use of pseudo-kinetic models that simulate the overall rate of
adsorption. In recent years, Ho presented a model that described
adsorption, which provided a novel idea to the second-order equation
called a pseudo-second-order (PSO) rate expression [7,8]. The PSO
kinetic equation of Ho based on adsorption capacity may be expressed
in the form:

dqt
dt

= k qm−qtð Þ2 ð1Þ
- The presence of q in the independent
variable introduces experimental error,
violating a basic assumption in the method
of least squares
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Table 2
Definition of the measurement-error models used.

Measurement-error
model

Definition

MEM-I Independent random error in q with constant variance
MEM-II Independent random error in C with variance

proportional to C
Error in q dependant on error in C according to Eq. (5)

MEM-III Independent random error in C with constant variance
Error in q dependent on error in C according to Eq. (5)

Table 3
Percentage errors in estimated values of qm and k obtained from linear and non-linear regre
errors to ideal pseudo-second-order q and C values. (MEM-I). εq: % error in estimated valu

Error
variance
(% of
qm)

Non-linear Linear 1

εq εk εq εk

2 Mean 0.29 −1.60 −0.14 1.50
Standard deviation 0.92 3.99 1.39 7.77
Variance 0.84 15.89 1.93 60.31
Median 0.34 −2.36 −0.26 1.78

5 Mean 0.25 −0.58 3.70 11.08
Standard deviation 1.45 7.25 18.32 54.19
Variance 2.11 52.51 335.6 2937
Median 0.45 0.31 −0.05 4.93

10 Mean 0.30 −1.33 0.27 65.36
Standard deviation 2.20 10.27 5.90 236.5
Variance 4.83 105.4 34.83 55,964
Median −0.03 0.09 −−0.38 2.69

20 Mean −1.19 5.48 −13.07 3.74
Standard deviation 3.23 13.11 48.60 81.88
Variance 10.41 171.9 2362 6704
Median −1.36 7.56 −2.80 17.10

Fig. 1. Box plots for the percentage error in estimation of qm by different methods of regressi
obtained by adding independent random errors to ideal pseudo-second-order q and C valu

94 M.I. El-Khaiary et al. / Desalination 257 (2010) 93–101
where k is the rate constant of pseudo-second-order adsorption
(g mg−1 min−1), qm is the amount of solute adsorbed at equilibrium
(mg g−1), and qt is the amount of solute adsorbed at time t (mg g−1).
Integrating Eq. (1) for boundary conditions t=0 to t= t and qt=0 to
qt=qt gives:

qt =
q2mkt

1 + qmt
ð2Þ
ssion calculations. Synthetic kinetic data were obtained by adding independent random
e of qm, εk: % error in estimated value of k.

Linear 2 Linear 3 Linear 4

εq εk εq εk εq εk

−71.18 2.55 1.75 −6.02 −1.13 2.97
217.7 67.37 2.39 11.76 3.06 12.68

47,407 4539 5.69 138.4 9.38 160.7
1.97 3.43 1.42 −1.42 −1.36 5.40

−21.79 15.73 7.25 −35.48 −3.86 8.09
252.7 106.4 8.78 55.73 8.03 27.16

63,855 11,311 77.15 3105 64.50 737.8
7.29 24.91 4.32 −12.08 −1.64 6.93

10.37 34.81 9.81 −50.46 −3.48 1.96
170.6 607.5 6.66 50.58 10.36 34.54

29,099 3.69×105 44.38 2559 107.3 1193
28.47 −50.38 9.96 −42.76 −0.62 2.50
53.84 −113.9 15.53 −113.3 −8.61 11.14
81.21 212.0 10.11 126.8 15.95 41.22

6596 44,927 102.3 16,076 254.3 1699
41.40 −155.2 16.41 −78.41 −5.59 18.59

on of synthetic PSO data at different levels of error variance. Synthetic kinetic data were
es. (MEM-I).



Fig. 2. Box plots for the percentage error in estimation of k by different methods of regression of synthetic PSO data at different levels of error variance. Synthetic kinetic data were
obtained by adding independent random errors to ideal pseudo-second-order q values. (MEM-I).

Fig. 3. Box plots for the r2 values of the different methods of regression of synthetic PSO
data. Synthetic kinetic data were obtained by adding independent random errors to
ideal pseudo-second-order q values. (MEM-I).

95M.I. El-Khaiary et al. / Desalination 257 (2010) 93–101
and the initial rate of adsorption, h, is:

h = kq2m: ð3Þ

A theoretical analysis of the PSO model was reported by Azizian [9].
The advantage of Azizian's derivation is that when the initial
concentration of a solute is low, the adsorption process obeys the
pseudo-second-order model. The PSO equation has the following
advantages [10]:

It does not have the problem of assigning an effective adsorption
capacity; theadsorption capacity, rate constantof pseudo-second-order,
and the initial adsorption rate can all be determined from the equation
without initially knowing any parameter. On using the PSO model, it
should be kept in mind that it does not correspond to any specific
physical models; it simply approximates well the behaviors predicted
by many different theoretical approaches [11].

Due to its simplicity and its good fitting many adsorption systems,
the PSO model has been extensively used in the modeling of numerous
adsorption systems [8]. Because the PSO as expressed by Eq. (2) is non-
linear, estimating the values of qm and k requires fitting the equation to
experimental data by non-linear regression using numerical optimiza-
tion techniques. A common alternative to non-linear regression is to use
linearized versions of the equation which allows for the calculation of
the two parameters, qm and k, by linear regression on transformed data
(Table 1) [12].

Because linear regression is convenient, requires little understanding
of the data fitting process, and is easily done in spreadsheets such as
Microsoft® ExcelTM, this method is commonly used for estimating the
pseudo-second-order parameters. A limitation to this linearization
approach, however, is that the transformation of data required for
linearization can result in modifications of error structure, introduction
of error into the independent variable, and alteration of the weight
placed on each data point [13]. These limitations often lead to
differences in fitted parameter values between linear and non-linear
versions of the PSO model [12]. In Table 1 we summarize the effects of
different linearizations on the least squares regression results. Linear 1



Fig. 4. Box plots for the percentage error in estimation of qm by different methods of regression of synthetic PSO data at different levels of error variance. Synthetic kinetic data were
obtained by adding a random error proportional to C in ideal pseudo-second-order data, then calculating q from Eq. (5) (MEM-II).
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and Linear 2 models both have t/q and 1/q in the Y axis, which yields
numerically small values of Ywhen q is large, thus reversing the relative
weights (and leverage) of data points by giving greaterweights to point
of small q values. The distribution of experimental errors in both t and q
will change if the axis is the reciprocal (1/t or 1/q), as seen in Linear2 and
Linear 3. There is also the problem of spurious correlation in Linear 1,
Linear 3 and Linear 4. (i.e. the observed correlation is a “mathematical
artifact” without a real statistical meaning), it often occurs when the
ratios between variables are used to build parametric relationships
between the variables themselves [14,15]. Many experimental proce-
dures have negligible errors inmeasuring t, but when the X axis is q/t or
q, as in Linear 3 and Linear4, anexperimental error is introduced in theX
variable.

Although it is commonly assumed that linearized versions of the
PSO model provide poorer fits and less accurate parameter
estimates than the non-linear equation [12], this assumption may
not be always true. However, it is not appropriate to use the linear
regression analysis for comparing the best-fitting of linear models.
Non-linear analysis could be a better method. The most accurate
PSO equation for regression will depend on the error structure of
the data because a major assumption in least squares analyses is
that the variance of the errors remains constant [16]. Therefore, if a
transformation improves the constancy of the error variance, then
the associated linear equation will provide more accurate param-
eter estimates than the non-linear equation [17]. For example,
studies on the Langmuir isotherm showed that while the non-linear
equation provides the most accurate parameter estimates when the
error variance remains constant [13,18–21] but linearized versions
of the Langmuir equation have been shown to provide slightly
better parameter estimates than the non-linear equation when the
error variance increases linearly with the independent variable [22].

When the experimental errors in the data are small, the choice of
which linearized, or non-linear, equation used for regression has a
minor effect on the estimated PSO parameter values. However, when
experimental errors are large, it would be useful to know which
equation gives the most accurate estimates.

The objectives of this paper are to demonstrate the differences in
estimated PSO parameters arising from the application of linear and
non-linear regression methods to kinetic adsorption data, and to
assess the accuracy of predictions from different regression methods.
In order to assess the accuracy of each regression method in the
presence of measurement errors, simulated PSO type data were
calculated then errors were added to the data set. The simulated data
were subsequently analyzed by linear and non-linear regression
methods and the accuracy of predicted PSO parameters were
compared.
2. Simulations

2.1. Measurement-errors in kinetic adsorption experiments

In the present study, the concentrations, C, were assumed to be
compromised by measurement errors, while true adsorption times,
t, were assumed to be error free. It should be noted that this
assumption of error-free adsorption times is not always correct. It is
only justified when the time needed for separating the solid
adsorbent from the solution is very short in comparison to the
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adsorption period. Therefore, the measurement error in adsorption
time may be safely ignored in cases such as:

Very quick separation, like in the case of granular adsorbent,
where simply pippeting instantaneously separates a solution
sample from the solid.
Data points taken at long adsorption times, thus diminishing the
relative error introduced by the finite time needed for separation.

If the errors in measuring adsorption times are appreciable, then
we will have at hand an error-in-variables problem [23], which is
outside the scope of the present study.

2.2. Errors in q values

The PSO equation is a relationship between q (the dependant
variable) and t (the independent variable). There is no practicalmethod
to measure q directly; its value is calculated by the equation:

q =
C0−Cð ÞV

m
ð4Þ

where C0 is the initial concentration of adsorbate (mg dm−3), V is
the volume of adsorbate solution in the adsorption experiment (dm3),
and m is the weight of adsorbent (g). From Eq. (4) it can be seen that
the error in q is a result of error propagation from measuring C, C0, V,
and m.
Fig. 5. Box plots for the percentage error in estimation of k by different methods of regressio
obtained by adding random error proportional to C in ideal pseudo-second-order data, then
2.3. Measurement error models for q values

2.3.1. Measurement-error model I (MEM-I)
If errors in measuring C, C0, V, and m are all appreciable, then the

measurement-error in q will be independent of the measurement
error in C.

2.3.2. Measurement-error models II and III (MEM-II and MEM-III)
The situation may be simplified if we assume that errors in

measuring C0, V, and m are very small compared to errors in
measuring C. This assumption maybe justified in many cases on the
basis of the methods of experiment and measurement; C0 accurately
measured by direct weighting and dilution, V by direct pipetting, and
m by direct weighting. On the other hand, the measurement of C is
much more complex because it involves preparation of solutions for
calibration curve, construction of calibration curve and modeling its
equation (straight line or polynomial), dilution of experimental
samples before measurement, measurement of absorbance in spec-
trophotometer, and also prediction uncertainty from using the
equation of the calibration curve.

In this case the error in q and Δq, is correlated to the error in C and
ΔC, by the equation:

Δq =
C0− C + ΔCð ÞV

m
−q: ð5Þ

The variance ofΔqwill depend primarily on the variance ofΔC. If the
error variance of ΔC is proportional to C, it can be easily seen in Eq. (5)
that the term C0−(C+ΔC) is not sensitive to errors in C if C is small, but
n of synthetic PSO data at different levels of error variance. Synthetic kinetic data were
calculating q from Eq. (5) (MEM-II).



Fig. 6. Box plots for the percentage error in estimation of qm by different methods of regression of synthetic PSO data at different levels of error variance. Synthetic kinetic data were
obtained by adding a random error of constant variance to C in ideal pseudo-second-order data, then calculating q from Eq. (5) (MEM-III).
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as C approaches C0, the value of C0−(C+ΔC) may change significantly.
ThereforeΔqwill bemore sensitive to errors inC at thebeginningperiod
of adsorption. This will be called henceforth measurement-error model
II (MEM-II). On the other hand, if the error variance of ΔC is constant,
then Δq will be more sensitive to measurement-errors in C when C is
small, i.e. the longer the adsorption period, the greater Δq will be, thus
giving rise to measurement-error model III (MEM-III). The three
measurement-error models defined above are summarized in Table 2.
2.4. Simulation of kinetic data

A simulated ideal data setwasdefinedwith16 adsorption times for a
PSO adsorption process having qm=100 mg g−1 and k=0.001 g
mg−1 min−1. The sampling times were 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25,
30, 40, 50, 60, 70, and 100min. The total experiment time of 100min
corresponds to q=90.9 mg g−1, i.e. 90.9% of the equilibrium value. One
criterion for the goodness of fit is the ability of the regressionmethod to
accurately estimate the correct value of qm which is extrapolated
beyond the range of data. Simulated experimental data (with random
errors corresponding to each measurement-error model) were gener-
ated. The levels of error variance studied in cases of MEM-I andMEM-III
were 2, 5, 10, and 20 mg2 g−2. In case ofMEM-II the equivalent levels of
error variance were 2%, 5%, 10%, and 20% of C. This data was
subsequently analyzed by the different linearized and the non-linear
PSO models. This step was repeated 30 times for each combination of
MMEand error variance, and then the distributionof estimated qmand k
were studied.

2.5. Estimation of regression parameters

All calculations were performed using Microsoft Excel®. Linear
regression for each linearized PSO equation was done by the
conventional least-squares method, while the coefficient of determina-
tion, r2,was calculated by thebuilt-in Excel functionRSQ. The regression
parameters were also estimated by non-linear regression using the
Excel add-in Solver.

2.6. Evaluation of estimation quality

Since the true values of qm and k are known, the errors in the
estimated values of qm and k were calculated as:

%Error =
Ee−Et
Et

× 100% ð6Þ

where Ee is estimated value, Et is true value.

3. Results

The estimates of qm and k from the four linearized PSO models
and from the non-linear model were compared for different
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measurement-error-models. The regression results are graphically
presented as Box plots and the corresponding numerical results are
listed in Tables S1–S3 in the supporting information section. It
should be mentioned that in order to keep the scale of Box Plots
within reasonable limits, some severe outliers are not shown.

Box plots express the accuracy and precision of the estimates.
The top and bottom of the box are the 25th and 75th percentiles
(Q1 and Q3, respectively). The length of the box is thus the
interquartile range (IQR). Accordingly, the box represents the
middle 50% of the data. The IQR is a measure of spread. A “square”
symbol and a line are drawn through the box at the median, Q2,
(the 50th percentile). The median is a measure of the variable's
location (center), it is defined as the numeric value separating the
higher half of a sample, a population, or a probability distribution,
from the lower half. The median can be used as a measure of
location when a distribution is skewed, when end values are not
known, or when one requires reduced importance to be attached to
outliers. The upper adjacent value is the largest observation that is
less than or equal to the 75th percentile plus 1.5 times IQR. The
lower adjacent value is the smallest observation that is greater than
or equal to the 25th percentile minus 1.5 times IQR. The adjacent
values are displayed as T-shaped lines that extend from each end of
the box. Values outside the upper and lower adjacent values are
called outside values. Values that are under three IQRs from the
25th and 75th percentiles are called mild outliers and plotted with
Fig. 7. Box plots for the percentage error in estimation of k by different methods of regressio
obtained by adding random error of constant variance to C in ideal pseudo-second-order d
“x” symbols. Those outside three IQRs are called severe outliers and
plotted with triangle symbols.

3.1. Data having independent random errors in q and C (MEM-I)

Table 3 shows the distribution of the percentage error in
estimating qm and k values from the non-linear and the linearized
PSO equations by the method of least squares for data having
independent random errors in both C and q. It is obvious that the
linearized equation Linear 2 provides the worst estimates. It can be
seen in Figs. 1 and 2 that the estimates from Linear 2 varied wildly,
even at the smallest level of error variance investigated. This is
because this equation is a relationship between 1/q vs. 1/t, and
therefore, extremely big weight is given to data points at the
beginning of the adsorption period. Thus, the slope and intercept of
the line are greatly sensitive to errors in q at early periods of
adsorption, leading to biased estimates.

The linearized equations Linear 3 and Linear 4 perform
reasonably at low levels of error variance, but as the error variance
increased, both the accuracy and precision of estimates from Linear
3 deteriorated much more than estimates from Linear 4. This is
interesting because, as shown in Fig. 3, the r2 values obtained from
both equations are exactly the same. This demonstrates the
ineffectiveness of comparing models based on r2 values of
linearized (transformed) equations. Mathematically, both equations
n of synthetic PSO data at different levels of error variance. Synthetic kinetic data were
ata, then calculating q from Eq. (5) (MEM-III).



Table 4
Percentage errors in estimated values of qm and k obtained from linear and non-linear regression calculations. Synthetic kinetic data were obtained by adding a random error
proportional to C in ideal pseudo-second-order data, then calculating q from Eq. (5) (MEM-II). εq: % error in estimated value of qm, εk: % error in estimated value of k.

Error
variance
(% of
C0)

Non-linear Linear 1 Linear 2 Linear 3 Linear 4

εq εk εq εk εq εk εq εk εq εk

2 Mean 0.51 −3.52 3.81 14.84 −304.5 491.0 13.25 −154.7 −12.70 −1.16
Standard deviation 1.31 8.26 18.36 51.68 1480 2837 10.72 342.9 43.65 46.53
Variance 1.72 68.2 337.1 2670 2.2×106 8.0×105 114.9 1.2×105 1905 2164
Median 0.77 −4.20 0.20 1.16 25.84 −34.06 10.94 −66.09 0.50 −6.84

5 Mean 0.10 −1.67 −21.43 −9.24 −7.32 475.3 21.79 −153.5 −4.86 9.91
Standard deviation 1.81 12.10 129.5 112.2 352.4 2615 11.23 490.4 29.48 131.1
Variance 3.30 146.5 1.7×104 1.2×104 1.2×105 6.8×106 126.1 2.4×105 869.1 1.7×104

Median 0.10 0.49 0.42 −2.64 36.81 −145.16 21.83 −160.1 2.99 −18.07
10 Mean −1.05 4.31 −1.90 −58.14 57.92 −12313 31.33 604.7 50.60 52.96

Standard deviation 2.97 15.71 20.39 268.7 566.1 72,887 12.69 2832 206.5 127.79
Variance 8.79 246.7 415.6 7.2×104 3.2×105 5.3×109 161.0 8.0×106 42,647 16,330
Median −0.41 5.42 0.47 0.78 57.05 82.64 30.82 −144.8 −0.29 33.16

20 Mean 0.02 −2.41 8.50 28.08 51.35 821.9 36.05 461.3 80.77 76.25
Standard deviation 4.07 25.54 66.25 204.1 111.9 4264 11.39 3881 416.4 190.9
Variance 16.59 652.3 4389 41,676 12,509 1.8×106 129.7 1.5×107 1.7×105 36,441
Median 0.03 2.08 1.36 9.24 53.21 −37.55 36.44 −319.0 1.69 34.35
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are identical with Linear 4 actually being Linear 3 divided by t. This
division, however, makes a vital difference when it comes to least
squares regression. Linear 3 is a relationship between q vs. q/t while
Linear 4 has the X and Y axis reversed, i.e. the relationship is
between q/t vs. q. Reversing the axis is known to change the
regression estimates because least-squares minimizes the error in
the Y axis and assumes that the X values are error-free. Both
equations have q (with measurement error) in the X variable, thus
violating a basic assumption in the method of least-squares, and as
expected, their estimates are biased and inefficient.

The linearized PSO equation Linear 1 gave estimates almost as
accurate as the non-linear equation, but the non-linear estimates were
more precise. In statistical terms, the regression of the non-linear
equation proved to be more robust, i.e. less sensitive to measurement
errors. As the error variance increased, Linear 1 resulted in more biased
estimates and more outliers. Robustness is considered as a major
criterion in the evaluation of models and methods of regression [24],
and therefore the nonlinear method is considered superior to Linear 1
when the experimental error is distributed according to MEM1.
Table 5
Percentage errors in estimated values of qm and k obtained from linear and non-linear regre
constant variance to C values in ideal pseudo-second-order data. Then calculating q from Eq

Error
variance
(% of
C0)

Non-linear Linear 1

εq εk εq εk

2 Mean −0.21 0.42 −0.77 3.71
Standard deviation 1.06 4.90 1.23 7.22
Variance 1.12 24.04 1.51 52.12
Median −0.13 −0.05 −0.72 4.24

5 Mean 0.12 −0.08 −0.31 2.82
Standard deviation 2.05 8.77 2.71 13.43
Variance 4.21 76.85 7.32 180.3
Median 0.00 0.84 −0.17 2.29

10 Mean −0.48 1.17 26.14 8.85
Standard deviation 2.26 9.48 161.8 25.72
Variance 5.13 89.95 26,188 661.7
Median −0.62 0.97 −0.40 1.30

20 Mean 0.88 −3.64 −1.21 61.88
Standard deviation 2.93 13.44 7.75 308.1
Variance 8.59 181 60.05 94,939
Median 0.66 −3.08 −0.56 6.70
3.2. Data having independent random errors in C with variance
proportional to C (MEM-II)

The results in Figs. 4 and 5 are generally similar to the case of
MEM-I with slight differences. The non-linear equation provided the
most accurate and precise estimates. Linear 1 did not perform as well
as it did in case of MEM-I. WithMEM-II errors, the estimates of qm and
k were generally accurate but notoriously sensitive to errors, thus
giving outlier estimates even at the smallest error variance investi-
gated. Equations Linear 3 and 4, just like in case of MEM-I, gave
different estimates although the r2 values were the same. Linear 2
provided estimates that are extremely inaccurate and scattered.

3.3. Data having independent random errors random error in C with
constant variance (MEM-III)

The results in Figs. 6 and 7 are much the same as MEM-I. The non-
linear equation was the most accurate and precise at all levels of error
variance, the numerical values are shown in Tables 4 and 5. Linear 1
ssion calculations. Synthetic kinetic data were obtained by adding a random error with
. (5) (MEM-III). εq: % error in estimated value of qm, εk: % error in estimated value of k.

Linear 2 Linear 3 Linear 4

εq εk εq εk εq εk

14.93 −5.74 1.98 −9.30 −1.17 2.27
142.6 70.49 4.08 26.43 3.56 15.46

20,335 4968 16.67 698.3 12.65 238.9
0.58 0.05 1.40 −3.73 −0.80 1.43

587.92 −37.97 5.51 −24.74 −0.75 −1.03
3237 116.7 5.17 31.04 5.47 22.92

1.0×107 13,606 26.69 963.8 29.94 525.5
15.36 −16.13 5.15 −18.97 0.41 −2.21

12,592 −173.7 9.26 −54.29 −0.69 −5.00
71,202 401.7 7.34 55.29 6.16 26.47

5.1×109 1.61×105 53.85 3057 37.95 700.5
23.01 −89.09 8.17 −39.24 1.24 −8.98
6.37 −42.16 15.46 −114.7 −6.35 0.59

174.5 643.6 9.39 122.0 19.56 44.11
30,435 4.14×105 88.23 14875 382.7 1945

39.90 14.52 14.75 −70.64 −2.94 9.69
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performed well especially when the error was small. Linear 2 was the
worst, and Linear 3 and 4 behaved as in case of MEM-I.

4. Conclusions

Based on the results of this study, it is not recommended to
estimate the PSO parameters by the linearized versions Linear 2,
Linear 3, and Linear 4. These linearized forms of the PSO equation
resulted in severely biased and inefficient estimates, Linear 2 being
the worst. The linearized PSO equation Linear 1 provided accurate
estimates in many cases, but it occasionally produced severe outliers.
Themethod of non-linear regression of the data on the non-linear PSO
equation was shown to be the most robust method studied. Nomatter
what type of error distribution compromised the data; non-linear
regression always produced accurate and efficient estimates of the
PSO parameters. Another point to consider is that the challenge for
fitting of kinetic adsorption equations to data is not limited only to the
choice of regression method, but also the selection of the correct
kinetic model. From a statistical point of view, it is fundamentally
wrong to compare the goodness of fit for models that are subjected to
different transformations. Therefore, in cases where the experimental
data are tentatively fitted to several kinetic equations, it is statistically
wrong to compare the goodness of fit (based on r2 or similar statistics)
if the kinetic equations are linearized.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.desal.2010.02.041.
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