Support Vector Machine (SVM)
From: 台大林智仁
教授
- guide for beginners.(A Practical Guide to Support Vector
Classification)
- SVM slides
- LIBSVM -- A Library for Support Vector Machines
-
Other Documents of LIBSVM by Users
-
Download libsvm
-
- svmtoy.exe
- D:\libsvm-2.84\windows>svmtoy.exe
-
- Frequently Asked Questions (FAQ)
- The
prediction rate is low. How could I improve it?
- Practice
-
heart
- D:\libsvm-2.84\windows>svmtrain.exe heart.txt
- D:\libsvm-2.84\windows>svmpredict.exe heart.txt
heart.txt.model heart.txt.output
-
heart_scale
- D:\libsvm-2.84\windows>svmscale.exe heart.txt > heart.scale
- D:\libsvm-2.84\windows>svmtrain.exe heart.scale
- D:\libsvm-2.84\windows>svmpredict.exe heart.scale
heart.scale.model heart.scale.output
- Practice
- D:\libsvm-2.84\windows>svmtrain
glass.scale
- D:\libsvm-2.84\windows>svmpredict
glass.scale glass.scale.model glass.scale.output
Accuracy = 60.2804% (129/214) (classification)
- Practice
- an easy script (easy.py) for users who know NOTHING about svm. It
makes everything automatic--from data scaling to parameter selection.
The parameter selection tool grid.py generates the following contour of
cross-validation accuracy.
SVM, Support Vector Machine